Facile nitrite reduction in a non-heme iron system: formation of an iron(III)-oxo.

J Am Chem Soc

School of Chemical Sciences, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States.

Published: December 2014

Reaction of tetrabutylammonium nitrite with [N(afa(Cy))3Fe(OTf)](OTf) cleanly resulted in the formation of an iron(III)-oxo species, [N(afa(Cy))3Fe(O)](OTf), and NO(g). Formation of NO(g) as a byproduct was confirmed by reaction of the iron(II) starting material with half an equivalent of nitrite, resulting in a mixture of two products, the iron-oxo and an iron-NO species, [N(afa(Cy))3Fe(NO)](OTf)2. Formation of the latter was confirmed through independent synthesis. The results of this study provide insight into the role of hydrogen bonding in the mechanism of nitrite reduction and the binding mode of nitrite in biological heme systems.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja510615pDOI Listing

Publication Analysis

Top Keywords

nitrite reduction
8
formation ironiii-oxo
8
facile nitrite
4
reduction non-heme
4
non-heme iron
4
iron system
4
formation
4
system formation
4
ironiii-oxo reaction
4
reaction tetrabutylammonium
4

Similar Publications

Anaerobic ammonia oxidation (anammox) which converts nitrite and ammonium to dinitrogen gas is an energy-efficient nitrogen removal process. One of the bottlenecks for anammox application in wastewater treatment is the stable supply of nitrite for anammox bacteria. Dissimilatory nitrate reduction to ammonium (DNRA) is a process that converts nitrate to nitrite and then to ammonium.

View Article and Find Full Text PDF

A Two-in-One Strategy to Simultaneously Boost the Site Density and Turnover Frequency of Fe-N-C Oxygen Reduction Catalysts.

Angew Chem Int Ed Engl

January 2025

Hunan University, Chemistry and Chemical Engineering, Lushan South Road, Yuelu District, 410082, Changsha, CHINA.

Site density and turnover frequency are the two fundamental kinetic descriptors that determine the oxygen reduction activity of iron-nitrogen-carbon (Fe-N-C) catalysts. However, it remains a grand challenge to simultaneously optimize these two parameters in a single Fe-N-C catalyst. Here we show that treating a typical Fe-N-C catalyst with ammonium iodine (NH4I) vapor via a one-step chemical vapor deposition process not only increases the surface area and porosity of the catalyst (and thus enhanced exposure of active sites) via the etching effect of the in-situ released NH3, but also regulates the electronic structure of the Fe-N4 moieties by the iodine dopants incorporated into the carbon matrix.

View Article and Find Full Text PDF

Unlabelled: The intestinal diarrheal pathogen colonizes the host terminal ileum, a microaerophilic, glucose-poor, nitrate-rich environment. In this environment, respires nitrate and increases transport and utilization of alternative carbon sources via the cAMP receptor protein (CRP), a transcription factor that is active during glucose scarcity. Here we show that nitrate respiration in aerated cultures is under control of CRP and, therefore, glucose availability.

View Article and Find Full Text PDF

Catalyst-Free Nitrogen Fixation by Microdroplets through a Radical-Mediated Disproportionation Mechanism under Ambient Conditions.

J Am Chem Soc

January 2025

State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China.

Nitrogen fixation is essential for the sustainable development of both human society and the environment. Due to the chemical inertness of the N≡N bond, the traditional Haber-Bosch process operates under extreme conditions, making nitrogen fixation under ambient conditions highly desirable but challenging. In this study, we present an ultrasonic atomizing microdroplet method that achieves nitrogen fixation using water and air under ambient conditions in a rationally designed sealed device, without the need for any catalyst.

View Article and Find Full Text PDF

Residual Nitrite, Nitrate, and Volatile N-Nitrosamines in Organic and Conventional Ham and Salami Products.

Foods

January 2025

Unit for Food Hygiene and Technology, Centre for Food Science and Veterinary Public Health, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria.

Nitrite and nitrate in meat products may be perceived negatively by consumers. These compounds can react to form carcinogenic volatile N-nitrosamines. "Nitrite-free" (i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!