Highly realistic, immersive training has been developed for Navy corpsmen based on the success of the Infantry Immersion Trainer. This new training is built around scenarios that are designed to depict real-life, operational situations. Each scenario used in the training includes sights, sounds, smells, and distractions to simulate realistic and challenging combat situations. The primary objective of this study was to assess corpsmen participants' satisfaction with highly realistic training. The study sample consisted of 434 male Navy service members attending Field Medical Training Battalion-West, Camp Pendleton, California. Corpsmen participants completed surveys after receiving the training. Participants expressed high levels of satisfaction with the training overall and with several specific elements of the training. The element of the training that the corpsmen rated the highest was the use of live actors. The vast majority of the participants reported that the training had increased their overall confidence about being successful corpsmen and had strengthened their confidence in their ability to provide care under pressure. Additional research should extend highly realistic training to other military medical provider populations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.7205/MILMED-D-14-00198 | DOI Listing |
Cardiovasc Eng Technol
January 2025
Institute for Medical Engineering and Science, Massachusetts Institute of Technology, MA, Cambridge, USA.
Purpose: Atrial fibrillation (AF) is the most common chronic cardiac arrhythmia that increases the risk of stroke, primarily due to thrombus formation in the left atrial appendage (LAA). Left atrial appendage occlusion (LAAO) devices offer an alternative to oral anticoagulation for stroke prevention. However, the complex and variable anatomy of the LAA presents significant challenges to device design and deployment.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, PR China; Faculty of Architecture, The University of Hong Kong, Hong Kong, PR China. Electronic address:
Infectious microbes can spread rapidly from fomites (contaminated surfaces) via hand touch, with prolonged residence time on surfaces increasing transmission risk by extending exposure periods and/or involving more susceptible individuals. Existing studies have focused on decreasing microbial contamination, but not on the need for rapid removal from surface systems. This study introduces residence time as the time that a microbe spends within the surface system.
View Article and Find Full Text PDFACS Sens
January 2025
Department of Physics, Umeå University, Umeå SE-901 87, Sweden.
Bacterial spores are highly resilient and capable of surviving extreme conditions, making them a persistent threat in contexts such as disease transmission, food safety, and bioterrorism. Their ability to withstand conventional sterilization methods necessitates rapid and accurate detection techniques to effectively mitigate the risks they present. In this study, we introduce a surface-enhanced Raman spectroscopy (SERS) approach for detecting spores by targeting calcium dipicolinate acid (CaDPA), a biomarker uniquely associated with bacterial spores.
View Article and Find Full Text PDFConf Proc Int Conf Image Form Xray Comput Tomogr
August 2024
Department of Radiology, Perelman School of Medicine, Philadelphia, PA, USA.
Respiratory motion phantoms can be used for evaluation of CT imaging technologies such as motion artifact reduction algorithms and deformable image registration. However, current respiratory motion phantoms do not exhibit detailed lung tissue structures and thus do not provide a realistic testing environment. This paper presents PixelPrint, a method for 3D-printing deformable lung phantoms featuring highly realistic internal structures, suitable for a broad range of CT evaluations, optimizations, and research.
View Article and Find Full Text PDFComput Biol Med
January 2025
School of Information Science and Engineering, Yunnan University, 650500, Kunming, China. Electronic address:
In the treatment of brain tumors, accurate diagnosis and treatment heavily rely on reliable brain tumor segmentation, where multimodal Magnetic Resonance Imaging (MRI) plays a pivotal role by providing valuable complementary information. This integration significantly enhances the performance of brain tumor segmentation. However, due to the uneven grayscale distribution, irregular shapes, and significant size variations in brain tumor images, this task remains highly challenging.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!