Albeit research on brain-computer interfaces (BCI) for controlling applications has expanded tremendously, we still face a translational gap when bringing BCI to end-users. To bridge this gap, we adapted the user-centered design (UCD) to BCI research and development which implies a shift from focusing on single aspects, such as accuracy and information transfer rate (ITR), to a more holistic user experience. The UCD implements an iterative process between end-users and developers based on a valid evaluation procedure. Within the UCD framework usability of a device can be defined with regard to its effectiveness, efficiency, and satisfaction. We operationalized these aspects to evaluate BCI-controlled applications. Effectiveness was regarded equivalent to accuracy of selections and efficiency to the amount of information transferred per time unit and the effort invested (workload). Satisfaction was assessed with questionnaires and visual-analogue scales. These metrics have been successfully applied to several BCI-controlled applications for communication and entertainment, which were evaluated by end-users with severe motor impairment. Results of four studies, involving a total of N = 19 end-users revealed: effectiveness was moderate to high; efficiency in terms of ITR was low to high and workload low to medium; depending on the match between user and technology, and type of application satisfaction was moderate to high. The here suggested evaluation metrics within the framework of the UCD proved to be an applicable and informative approach to evaluate BCI controlled applications, and end-users with severe impairment and in the locked-in state were able to participate in this process.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4254291 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0112392 | PLOS |
IEEE Trans Neural Syst Rehabil Eng
April 2023
Non-invasive Visual Stimuli evoked-EEG-based P300 BCIs have gained immense attention in recent years due to their ability to help patients with disability using BCI-controlled assistive devices and applications. In addition to the medical field, P300 BCI has applications in entertainment, robotics, and education. The current article systematically reviews 147 articles that were published between 2006-2021*.
View Article and Find Full Text PDFCogn Neurodyn
October 2022
Tianjin Key Laboratory of Control Theory and Applications in Complicated Systems, Tianjin University of Technology, Tianjin, 300384 China.
In this study, we propose a novel multi-modal brain-computer interface (BCI) system based on the threshold discrimination, which is proposed for the first time to distinguish between SSVEP and MI potentials. The system combines these two heterogeneous signals to increase the number of control commands and improve the performance of asynchronous control of external devices. In this research, an electric wheelchair is controlled as an example.
View Article and Find Full Text PDFDespite having the potential to improve the lives of severely paralyzed users, non-invasive Brain Computer Interfaces (BCI) have yet to be integrated into their daily lives. The widespread adoption of BCI-driven assistive technology is hindered by its lacking usability, as both end-users and researchers alike find fault with traditional EEG caps. In this paper, we compare the usability of four EEG recording devices for Steady-State Visually Evoked Potentials (SSVEP)-BCI applications: an EEG cap (active gel electrodes), two headbands (passive gel or active dry electrodes), and two adhesive electrodes placed on each mastoid.
View Article and Find Full Text PDFComput Biol Med
November 2022
Industrial Design Institute, Zhejiang University of Technology, Hangzhou, 310023, China.
Brain-computer interfaces (BCIs) can help people with disabilities to communicate with others, express themselves, and even create art. In this paper, a BCI painting system using a hybrid control approach based on steady-state visual evoked potential (SSVEP) and P300 was developed, which can enable simple painting through brain-controlled painting tools. The BCI painting system is composed of two parts: a hybrid stimulus interface and a hybrid electroencephalogram (EEG) signal processing module.
View Article and Find Full Text PDFIEEE Trans Neural Syst Rehabil Eng
March 2022
Brain-controlled wheelchairs are one of the most promising applications that can help people gain mobility after their normal interaction pathways have been compromised by neuromuscular diseases. The feasibility of using brain signals to control wheelchairs has been well demonstrated by healthy people in previous studies. However, most potential users of brain-controlled wheelchairs are people suffering from severe physical disabilities or who are in a "locked-in" state.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!