The giant bumphead parrotfish (Bolbometopon muricatum) has experienced precipitous population declines throughout its range due to its importance as a highly-prized fishery target and cultural resource. Because of its diet, Bolbometopon may serve as a keystone species on Indo-Pacific coral reefs, yet comprehensive descriptions of its reproductive ecology do not exist. We used a variety of underwater visual census (UVC) methods to study an intact population of Bolbometopon at Wake Atoll, a remote and protected coral atoll in the west Pacific. Key observations include spawning activities in the morning around the full and last quarter moon, with possible spawning extending to the new moon. We observed peaks in aggregation size just prior to and following the full and last quarter moon, respectively, and observed a distinct break in spawning at the site that persisted for four days; individuals returned to the aggregation site one day prior to the last quarter moon and resumed spawning the following day. The mating system was lek-based, characterized by early male arrival at the spawning site followed by vigorous defense (including head-butting between large males) of small territories. These territories were apparently used to attract females that arrived later in large schools, causing substantial changes in the sex ratio on the aggregation site at any given time during the morning spawning period. Aggression between males and courtship of females led to pair spawning within the upper water column. Mating interference was not witnessed but we noted instances suggesting that sperm competition might occur. Densities of Bolbometopon on the aggregation site averaged 10.07(±3.24 SE) fish per hectare (ha) with maximum densities of 51.5 fish per ha. By comparing our observations to the results of biennial surveys conducted by the National Oceanic and Atmospheric Administration (NOAA) Coral Reef Ecosystem Division (CRED), we confirmed spatial consistency of the aggregation across years as well as a temporal break in spawning activity and aggregation that occurred during the lunar phase. We estimated the area encompassed by the spawning aggregation to be 0.72 ha, suggesting that spawning site closures and temporal closures centered around the full to the new moon might form one component of a management and conservation plan for this species. Our study of the mating system and spawning aggregation behavior of Bolbometopon from the protected, relatively pristine population at Wake Atoll provides crucial baselines of population density, sex ratio composition, and productivity of a spawning aggregation site from an oceanic atoll. Such information is key for conservation efforts and provides a basic platform for the design of marine protected areas for this threatened iconic coral reef fish, as well as for species with similar ecological and life history characteristics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4250069PMC
http://dx.doi.org/10.7717/peerj.681DOI Listing

Publication Analysis

Top Keywords

spawning aggregation
16
aggregation site
16
spawning
13
quarter moon
12
spawning site
12
aggregation
9
aggregation behavior
8
reproductive ecology
8
giant bumphead
8
bumphead parrotfish
8

Similar Publications

Pacific Island communities are heavily dependent on fisheries for subsistence and livelihoods. Yet, despite their importance, coastal fisheries are poorly managed and commercial pressures increasingly threaten them. Groupers (Epinephelidae) are exceptionally vulnerable to overexploitation due to aspects of their biology while their economic value makes them a prime target for commerce.

View Article and Find Full Text PDF

Due to the logistical and financial challenges in studying migratory marine species, there is relatively limited knowledge of the reproductive biology, behavior, and habitat use of many ecologically important marine megafauna species, including the Atlantic tarpon Megalops atlanticus. Here, we present a novel observation using consumer-grade aerial drones to observe, quantify the scale of, and classify behaviors within a previously unreported tarpon aggregation (N = 182) over the course of a 2-day fish aggregation event. After the event, we analysed and compared observed behaviors (e.

View Article and Find Full Text PDF

Pulsed resources resulting from animal migrations represent important, transient influxes of high resource availability into recipient communities. The ability of predators to respond and exploit these large increases in background resource availability, however, may be constrained when the timing and magnitude of the resource pulse vary across years. In coastal Newfoundland, Canada, we studied aggregative responses of multiple seabird predators to the annual inshore pulse of a key forage fish species, capelin (Mallotus villosus).

View Article and Find Full Text PDF

Human disturbances can prompt natural anti-predator behaviours in animals, affecting how energy is traded off between immediate survival and reproduction. In our study of male squaretail groupers () in India's Lakshadweep archipelago, we investigated the impact of fishing pressure on anti-predatory responses and reproductive behaviours by comparing a fished and unfished spawning aggregation site and tracking responses over time at the fished site. Using observational sampling and predator exposure experiments, we analysed fear responses (flight initiation distance, return time), as well as time spent in vigilance, courtship and territorial defence.

View Article and Find Full Text PDF

Over the last 10 years, the spawning population of invasive pink salmon () has increased in the river systems in northern Norway to a level that is causing concern about their impact on endemic fauna and ecosystem processes. The scale of transfer of pink salmon carcasses into the terrestrial ecosystem is likely to be a key determinant of terrestrial impact. Bears ( sp.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!