Development of oncologic conditions is often accompanied by inadequate vitamin D status. The chemoprevention ability of this molecule is of high interest for breast cancer, the most common malignancy in women worldwide. Because current effective vitamin D analogues, including the naturally occurring active metabolite 1,25-dihydroxycholecalciferol (1,25(OH)2D), frequently cause hypercalcemia at pharmacologic doses, the development of safer molecules for clinical chemopreventive use is essential. This study examines whether exogenously supplied prohormone 25-hydroxycholecalciferol (25(OH)D) can delay tumor progression in vivo without hypercalcemic effects. A low vitamin D diet (25 IU/kg) in the non-immunodeficient MMTV-PyMT mouse model of metastatic breast cancer revealed a significant acceleration of mammary neoplasia compared with normal diet (1,000 IU/kg). Systemic perfusion of MMTV-PyMT mice with 25(OH)D or 1,25(OH)2D delayed tumor appearance and significantly decreased lung metastasis, and both metabolites reduced Ki-67, cyclin D1, and ErbB2 levels in tumors. Perfusion with 25(OH)D caused a 50% raise in tumor 1,25(OH)2D levels, indicating good tumor penetration and effective activation. Importantly, in contrast with 1,25(OH)2D, perfusion with 25(OH)D did not cause hypercalcemia. In vitro treatment of cultured MMTV-PyMT mammary tumor cells with 25(OH)D inhibited proliferation, confirming local activation of the prohormone in this system. This study provides an in vivo demonstration in a non-immunodeficient model of spontaneous breast cancer that exogenous 25(OH)D delays neoplasia, tumor growth, and metastasis, and that its chemoprevention efficacy is not accompanied by hypercalcemia.

Download full-text PDF

Source
http://dx.doi.org/10.1158/1940-6207.CAPR-14-0110DOI Listing

Publication Analysis

Top Keywords

breast cancer
16
mmtv-pymt mouse
8
mouse model
8
perfusion 25ohd
8
25ohd
6
tumor
6
chemoprevention activity
4
activity 25-hydroxyvitamin
4
mmtv-pymt
4
25-hydroxyvitamin mmtv-pymt
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!