This work focused on the process of bone repair of defects in standardized calvaria of Wistar rats treated with biphasic calcium phosphate (BCP), mineral trioxide aggregate (MTA), or a combination of the two. Eighty Wistar rats were divided into four treatment groups and were examined at 2 and 8 weeks. A surgical defect was created in the calvaria using a 6-mm diameter trephine drill. The cavity was treated with BCP, MTA, or BCP+MTA; untreated rats with clot formation served as controls. Samples were evaluated histologically and by immunohistochemical staining for areas of new osteoid tissue and new bone tissue, as well as the percentage of labelled cells using anti-bone morphogenetic protein receptor type 1B (anti-BMPR1B) antibodies. Statistically significant differences were found for all dependent variables (area of new osteoid tissue, area of new bone, and percentage immunostaining) by group (P<0.0001) and time (P<0.0001), and for the interaction of the two (P<0.0001). The MTA group at 8 weeks showed the highest amount of osteoid tissue. The same group also exhibited the highest amount of bone tissue formation. The 2-week MTA samples and 2-week BCP+MTA samples exhibited the highest percentages of stained cells. The best results in terms of the area of osteoid and bone tissue formation and the percentage of BMPR1B were observed for the MTA group, confirming that the combination of BCP+MTA does not result in a significant improvement.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijom.2014.10.018DOI Listing

Publication Analysis

Top Keywords

biphasic calcium
8
calcium phosphate
8
mineral trioxide
8
trioxide aggregate
8
wistar rats
8
osteoid tissue
8
histological immunohistochemical
4
immunohistochemical evaluation
4
evaluation biphasic
4
phosphate mineral
4

Similar Publications

Robocasting calcium phosphate compounds as a novel approach to creating customized structures with interconnected pores not only overcomes the limitations of traditional fabrication methods of calcium phosphate substitutes but also boosts the potential for bone tissue regeneration. The ink development is a key step in 3D printing. In this study, different inks consisting of magnesium- and sodium-doped carbonated hydroxyapatite, β-tricalcium phosphate, and Pluronic F-127 were prepared to design biomimetic bone scaffolds.

View Article and Find Full Text PDF

Human long bones exhibit pore size gradients with small pores in the exterior cortical bone and large pores in the interior cancellous bone. However, most current bone tissue engineering (BTE) scaffolds only have homogeneous porous structures that do not resemble the graded architectures of natural bones. Pore-size graded (PSG) scaffolds are attractive for BTE since they can provide biomimicking porous structures that may lead to enhanced bone tissue regeneration.

View Article and Find Full Text PDF

Chronic osteomyelitis of the maxillofacial bones (i.e., jaw bones) is a persistent infection that requires effective treatment.

View Article and Find Full Text PDF

Purpose: Currently, maxillary sinus floor (SF) elevation is based on off-the-shelf allogeneic, xenogeneic or synthetic bone augmentation materials (BAM) that are implanted via an open lateral sinus wall approach (OSFE). However, this invasive method is associated with postoperative complications caused by an inadequate blood supply of the alveolar ridge. Balloon-assisted procedures are minimal invasive alternatives with lower complication rates.

View Article and Find Full Text PDF

Exploring the impact of calcium phosphate biomaterials on cellular metabolism.

Heliyon

November 2024

Institute of Biomaterials and Bioengineering, Faculty of Natural Sciences and Technology, Riga Technical University, Riga, Latvia.

Calcium phosphate (CaP) biomaterials have been widely used in hard tissue engineering, but their impact on cell metabolism is unclear. We synthesized and characterized hydroxyapatite, β-tricalcium phosphate, and biphasic calcium phosphate composites to investigate material effects on NIH/3T3 cell metabolism. The intracellular metabolites were analyzed employing LC-MS metabolomics, and cell metabolic status was assessed comparatively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!