A chimeric embryoid body model to study vascular morphogenesis.

Methods Mol Biol

Division of Vascular Surgery, Department of Surgery, Robert Wood Johnson Medical School, Rutgers-The State University of New Jersey, New Brunswick, NJ, 08903, USA.

Published: July 2015

Embryonic stem cell (ESC)-derived embryoid body (EB) is a unique model for studying vascular development, in that it provides a three-dimensional microenvironment that mimics an in vivo milieu. When using gene-targeting EBs to study certain defects in vascular morphogenesis, it is necessary to determine whether the defect is due to the intrinsic loss of the gene in endothelial cells (EC) or rather due to the lack of surrounding factors that would typically promote vascular development. Here we describe a chimeric EB vessel development model, in which the utilization of the PECAM-GFP reporter gene in wild-type ESCs allows for the introduction of "normal" extracellular factors formed by its parallel differentiation to the gene-deletion EC that might otherwise be devoid of these factors.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4939-1462-3_13DOI Listing

Publication Analysis

Top Keywords

embryoid body
8
vascular morphogenesis
8
vascular development
8
chimeric embryoid
4
body model
4
model study
4
vascular
4
study vascular
4
morphogenesis embryonic
4
embryonic stem
4

Similar Publications

Embryoid Body Test: A Simple and Reliable Alternative Developmental Toxicity Test.

Int J Mol Sci

December 2024

Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea.

The increasing emphasis on animal welfare and ethics, as well as the considerable time and cost involved with animal testing, have prompted the replacement of many aspects of animal testing with alternative methods. In the area of developmental toxicity, the embryonic stem cell test (EST) has played a significant role. The EST evaluates toxicity using mouse embryonic stem cells and somatic cells and observes the changes in heartbeat after cardiac differentiation.

View Article and Find Full Text PDF

Three-dimensional (3D) tissue culture models provide in vivo-like conditions for studying cell physiology. This study aimed to examine the efficiency of pyramidal microwell geometries in microfluidic devices on spheroid formation, cell growth, viability, and differentiation in mouse embryonic stem cells (mESCs). The static culture using the hanging drop (HD) method served as a control.

View Article and Find Full Text PDF

Cardiovascular disease comprises a group of disorders affecting or originating within tissues and organs of the cardiovascular system; most, if not all, will eventually result in cardiomyocyte dysfunction or death, negatively impacting cardiac function. Effective models of cardiac disease are thus important for understanding crucial aspects of disease progression, while recent advancements in stem cell biology have allowed for the use of stem cell populations to derive such models. These include three-dimensional (3D) models such as stem cell-based models of embryos (SCME) as well as organoids, many of which are frequently derived from embryoid bodies (EB).

View Article and Find Full Text PDF

The Unique Roles of Ion Channels in Pluripotent Stem Cells in Response to Biological Stimuli.

Biology (Basel)

December 2024

School of Pharmacy at Fukuoka, International University of Health and Welfare, Enokizu 137-1, Okawa 831-8501, Fukuoka, Japan.

Ion channels are essential for mineral ion homeostasis in mammalian cells, and these are activated or inhibited by environmental stimuli such as heat, cold, mechanical, acidic, or basic stresses. These expressions and functions are quite diverse between cell types. The function and importance of ion channels are well-studied in neurons and cardiac cells, while those functions in pluripotent stem cells (PSCs) were not fully understood.

View Article and Find Full Text PDF

Vascular organoids derived from human induced pluripotent stem cells (hiPSCs) recapitulate the cell type diversity and complex architecture of human vascular networks. This three-dimensional (3D) model holds substantial potential for vascular pathology modeling and in vitro drug screening. Despite recent advances, a key technical challenge remains in reproducibly generating organoids with consistent quality, which is crucial for downstream assays and applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!