Hair cells are the mechanosensory cells of the inner ear. Mechanotransduction channels in hair cells are gated by tip links. The molecules that connect tip links to transduction channels are not known. Here we show that the transmembrane protein TMIE forms a ternary complex with the tip-link component PCDH15 and its binding partner TMHS/LHFPL5. Alternative splicing of the PCDH15 cytoplasmic domain regulates formation of this ternary complex. Transducer currents are abolished by a homozygous Tmie-null mutation, and subtle Tmie mutations that disrupt interactions between TMIE and tip links affect transduction, suggesting that TMIE is an essential component of the hair cell's mechanotransduction machinery that functionally couples the tip link to the transduction channel. The multisubunit composition of the transduction complex and the regulation of complex assembly by alternative splicing is likely critical for regulating channel properties in different hair cells and along the cochlea's tonotopic axis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4258123 | PMC |
http://dx.doi.org/10.1016/j.neuron.2014.10.041 | DOI Listing |
Cells
December 2024
Department of Immunology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea.
The hair follicle is a complex of mesenchymal and epithelial cells acquiring different properties and characteristics responsible for fulfilling its inductive and regenerative role. The epidermal and dermal crosstalk induces morphogenesis and maintains hair follicle cycling properties. The hair follicle is enriched with pluripotent stem cells, where dermal papilla (DP) cells and dermal sheath (DS) cells constitute the dermal compartment and the epithelial stem cells existing in the bulge region exert their regenerative role by mediating the epithelial-mesenchymal interaction (EMI).
View Article and Find Full Text PDFJ Biomech Eng
January 2025
School of Aerospace and Mechanical Engineering, University of Oklahoma, 865 Asp Ave, Norman, OK 73019, USA.
Hearing loss is highly related to acoustic injuries and mechanical damage of ear tissues. The mechanical responses of ear tissues are difficult to measure experimentally, especially cochlear hair cells within the organ of Corti (OC) at microscale. Finite element (FE) modeling has become an important tool for simulating acoustic wave transmission and studying cochlear mechanics.
View Article and Find Full Text PDFeNeuro
January 2025
Hearing Technology @ WAVES, Department of Information Technology, Ghent University, Technologiepark 216, 9052 Zwijnaarde, Belgium
Speech intelligibility declines with age and sensorineural hearing damage (SNHL). However, it remains unclear whether cochlear synaptopathy (CS), a recently discovered form of SNHL, significantly contributes to this issue. CS refers to damaged auditory-nerve synapses that innervate the inner hair cells and there is currently no go-to diagnostic test available.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
aDepartment of Dermatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China. Electronic address:
Tissue engineering utilizing hydrogel scaffolds in combination with exogenous stem cells holds significant potential for promoting wound regeneration. However, the microenvironment provided by existing skin tissue engineering scaffold materials is often inadequate. Herein, we demonstrate an enzyme-crosslinked hyaluronic acid hydrogel to provide a growth microenvironment for exogenous bone marrow mesenchymal stem cells and promote acute wound healing.
View Article and Find Full Text PDFSheng Li Xue Bao
December 2024
Skin Disease Research Institute, the Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou 310058, China.
Skin, as the body's largest organ, acts as the primary defense mechanism against infection and injury. The maintenance of skin health heavily relies on the regulation of epidermal stem cells, crucial for ensuring epidermal homeostasis, hair regeneration, and the repair of epidermal injuries. Recent studies have placed a growing emphasis on G protein-coupled receptor (GPCR) in the context of understanding epidermal stem cells, uncovering its significant role in determining their fate.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!