AI Article Synopsis

  • The study investigates the relationship between mRNA and protein levels in a specific anaerobic community involved in bioremediation.
  • mRNA levels of certain genes in Dehalococcoides and Methanospirillum show varying abundances and regulation, but there are discrepancies between mRNA abundance and corresponding protein levels.
  • These findings emphasize the complex nature of gene expression in microbes and the need for direct measurements to accurately assess biomarker levels in environmental contexts.

Article Abstract

To better understand the quantitative relationships between messenger RNA (mRNA) and protein biomarkers relevant to bioremediation, we quantified and compared respiration-associated gene products in an anaerobic syntrophic community. Respiration biomarkers for Dehalococcoides, an organohalide reducer, and Methanospirillum, a hydrogenotrophic methanogen, were quantified via qRT-PCR for mRNA and multiple reaction monitoring (MRM) of proteotypic peptides for protein. mRNA transcripts of the Dehalococcoides reductive dehalogenases PceA, TceA, and DMC1545, and hydrogenase HupL, as well as the Methanospirillum oxidoreductases MvrD and FrcA were shown to be similarly regulated with respect to their temporal responses to substrate addition. However, MvrD was two orders of magnitude lower in mRNA abundance. Per cell, Dehalococcoides protein biomarkers quantified were more abundant than Methanospirillum proteins. Comparing mRNA with protein abundance, poor correlations were observed between mRNA transcript levels and the net protein produced. For example, Dehalococcoides HupL and TceA transcripts were similarly abundant though TceA was far more abundant at the protein level (167 ± 121 vs. 1095 ± 337 proteins per cell, respectively). In Methanospirillum, MvrD maintained comparable per-cell protein abundance to FrcA (42 ± 14 vs. 60 ± 1 proteins per cell, respectively) despite the significantly lower transcript levels. Though no variability in protein decay rates was observed, the mRNA translation rate quantified for TceA was greater than the other Dehalococcoides targets monitored. These data suggest that there is considerable variation in the relationship between mRNA abundance and protein production both across transcripts within an organism and across organisms. This highlights the importance of empirically based studies for interpreting biomarker levels in environmentally relevant organisms.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00253-014-6220-7DOI Listing

Publication Analysis

Top Keywords

mrna protein
12
protein
10
biomarker levels
8
mrna
8
protein biomarkers
8
mrna abundance
8
protein abundance
8
observed mrna
8
transcript levels
8
proteins cell
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!