Reprint of "Effects of amphetamine, diazepam and caffeine on polysomnography (EEG, EMG, EOG)-derived variables measured using telemetry in Cynomolgus monkeys".

J Pharmacol Toxicol Methods

Center for Advanced Research in Sleep Medicine and Research Center, Hôpital du Sacré-Coeur de Montréal, Montreal, QC, Canada, H4J 1C5; Department of Neuroscience, Université de Montréal, Montreal, QC, Canada, H3C 3J7.

Published: May 2015

Introduction: Medication-induced sleep disturbances are a major concern in drug development as a multitude of prescription drugs alter sleep patterns, often negatively. Polysomnography is used in clinical diagnostics but is also applicable to animal models. Rodent sleep architecture (nocturnal) differs from larger diurnal mammals, including humans, increasing the translational potential of non-rodent species to the clinic. This study aimed to characterize the response to pharmacological agents known to affect sleep structure and EEG activity in a non-human primate (Macaca fascicularis) using telemetry-based polysomnography.

Methods: Animals were instrumented with telemetry transmitters for continuous electroencephalogram (EEG), electro-oculogram (EOG) and electromyogram (EMG) monitoring combined with video. EEG, EMG and EOG were monitored for 12 to 24h to establish baseline values, followed by administration of pharmacological agents (saline, d-amphetamine, diazepam or caffeine).

Results: Amphetamine (0.3 and 1mg/kg, by oral administration (PO)) significantly reduced total sleep time, including the duration of both non-rapid eye movement [NREM] sleep and REM sleep. It also decreased EEG activity in low frequencies (i.e., 4-6Hz) during wakefulness. Diazepam (2mg/kg, PO) did not significantly alter sleep duration, but importantly reduced EEG activity in low frequencies (approximately 2-12Hz) during wakefulness, NREM and REM sleep. Finally, caffeine (10 and 30mg/kg, PO) decreased both NREM and REM sleep duration. In addition, spectral analysis revealed important decreases in low frequency activity (i.e., 1-8Hz) during wakefulness with a parallel increase in high frequency activity (i.e., 20-50Hz) during NREM sleep.

Discussion: As these observations are similar to previously reported pharmacological effects in humans, results support that EEG, EOG and EMG monitoring by telemetry in Cynomolgus monkeys represents a useful non-clinical model to investigate and quantify drug-induced sleep disturbances.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vascn.2014.10.004DOI Listing

Publication Analysis

Top Keywords

eeg activity
12
rem sleep
12
sleep
11
eeg emg
8
telemetry cynomolgus
8
sleep disturbances
8
alter sleep
8
pharmacological agents
8
emg monitoring
8
activity low
8

Similar Publications

Epilepsy Stands Nearby: A Pilot CT Perfusion Study on Post-Stroke Non-Convulsive Status Epilepticus.

Eur J Neurol

February 2025

IRCCS Istituto delle Scienze Neurologiche di Bologna, Department of Neurology and Stroke Center, Maggiore Hospital, Bologna, Italy.

Background: To investigate the relevance of hyperperfusion on computerised perfusion imaging (CTP) in the emergency setting in people with non-convulsive status epilepticus (NCSE) and previous stroke, to derive relevant aspects on the epileptogenic focus and the network recruited for NCSE propagation.

Methods: We enrolled consecutive adult patients with acute-onset NCSE and a previous stroke at a single institution undergoing CTP and EEG during symptoms. All patients underwent standard imaging including CT, CTP, CT angiograms and standard EEG within 30 min from hospital arrival.

View Article and Find Full Text PDF

Sleep and circadian rhythms are regulated by dynamic physiologic processes that operate across multiple spatial and temporal scales. These include, but are not limited to, genetic oscillators, clearance of waste products from the brain, dynamic interplay among brain regions, and propagation of local dynamics across the cortex. The combination of these processes, modulated by environmental cues, such as light-dark cycles and work schedules, represents a complex multiscale system that regulates sleep-wake cycles and brain dynamics.

View Article and Find Full Text PDF

Dysfunctional parenting (DP) is a factor of vulnerability and a predictive risk factor for psychopathology. Although previous research has shown specific functional and structural brain alterations, the neural basis of DP remains understudied. We therefore investigated EEG functional connectivity changes within the Salience Network before and after the exposure to attachment-related stimuli in individuals with high and low perceived DP.

View Article and Find Full Text PDF

When engaged in dynamic or continuous movements, action initiation involves modifying an ongoing motor program rather than initiating it from rest. Event-related theta synchronization over sensorimotor areas is a neurophysiological marker for modifying motor programs. We used electroencephalography (EEG) to examine how task complexity and age affect event-related synchronization (ERS) in the theta band during a dynamic bimanual, visuomotor pinch force task.

View Article and Find Full Text PDF

Radiofrequency evoked potentials: A new window into the nociceptive system.

Clin Neurophysiol

January 2025

Institute for Research and Development on Bioengineering and Bioinformatics (IBB), CONICET-UNER, Oro Verde, Argentina; Center for Rehabilitation Engineering and Neuromuscular and Sensory Research (CIRINS), National University of Entre Ríos (UNER), Oro Verde, Argentina. Electronic address:

Objective: To describe the cortical evoked potentials in response to radiofrequency stimulation (RFEPs) in human volunteers.

Methods: Seventeen healthy volunteers participated in an experimental session in which radiofrequency (RF) and electrical (ES) stimulation were applied to the dorsum of the hands and feet. EEG was recorded to evaluate evoked responses for each stimulus modality and stimulation site.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!