Tripping during locomotion, the leading cause of falls in older adults, generally occurs without prior warning and often while performing a secondary task. Prior warning can alter the state of physiological preparedness and beneficially influence the response to the perturbation. Previous studies have examined how altering the initial "preparedness" for an upcoming perturbation can affect kinematic responses following small disturbances that did not require a stepping response to restore dynamic stability. The purpose of this study was to examine how expectation affected fall outcome and recovery response kinematics following a large, treadmill-delivered perturbation simulating a trip and requiring at least one recovery step to avoid a fall. Following the perturbation, 47% of subjects fell when they were not expecting the perturbation whereas 12% fell when they were aware that the perturbation would occur "sometime in the next minute". The between-group differences were accompanied by slower reaction times in the non-expecting group (p < 0.01). Slower reaction times were associated with kinematics that have previously been shown to increase the likelihood of falling following a laboratory-induced trip. The results demonstrate the importance of considering the context under which recovery responses are assessed, and further, gives insight to the context during which task-specific perturbation training is administered.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.gaitpost.2014.10.026 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!