Introduction: Microsporidia constitute the most common black fly pathogens, although the species' diversity, seasonal occurrence and transmission mechanisms remain poorly understood. Infections by this agent are often chronic and non-lethal, but they can cause reduced fecundity and decreased longevity. The objective of this study was to identify microsporidia infecting Simulium (Chirostilbia) pertinax (Kollar, 1832) larvae from Caraguatatuba, State of São Paulo, Brazil, by molecular and morphological characterization.
Methods: Larvae were collected at a single point in a stream in a rural area of the city and were kept under artificial aeration until analysis. Polydispyrenia spp. infection was characterized by the presence of at least 32 mononuclear spores measuring 6.9 ± 1.0 × 5.0 ± 0.7 µm in persistent sporophorous vesicles. Similarly, Amblyospora spp. were characterized by the presence of eight uninucleate spores measuring 4.5 × 3.5 µm in sporophorous vesicles.
Results: The molecular analysis confirmed the presence of microsporidian DNA in the 8 samples (prevalence of 0.51%). Six samples (Brazilian larvae) were related to Polydispyrenia simulii and Caudospora palustris reference sequences but in separate clusters. One sample was clustered with Amblyospora spp. Edhazardia aedis was the positive control taxon.
Conclusions: Samples identified as Polydispyrenia spp. and Amblyospora spp. were grouped with P. simulii and Amblyospora spp., respectively, corroborating previous results. However, the 16S gene tree showed a considerable distance between the black fly-infecting Amblyospora spp. and the mosquito-infecting spp. This distance suggests that these two groups are not congeneric. Additional genomic region evaluation is necessary to obtain a coherent phylogeny for this group.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1590/0037-8682-0165-2014 | DOI Listing |
J Invertebr Pathol
May 2016
All-Russia Institute for Plant Protection, Russian Academy of Sciences, St. Petersburg, Russia.
Here we report on two microsporidia from freshwater crustaceans collected during the ongoing survey for microsporidia in the river Karasuk and adjacent waterbodies (Novosibirsk region, Western Siberia). The first species parasitized hypoderm and fat body of a cyclopid Cyclops sp. (Maxillopoda, Copedoda) and produced oval spores, measured 2.
View Article and Find Full Text PDFRev Soc Bras Med Trop
July 2015
Laboratório de Entomologia Médica, Superintendência de Controle de Endemias, São Paulo, SP, Brazil.
Introduction: Microsporidia constitute the most common black fly pathogens, although the species' diversity, seasonal occurrence and transmission mechanisms remain poorly understood. Infections by this agent are often chronic and non-lethal, but they can cause reduced fecundity and decreased longevity. The objective of this study was to identify microsporidia infecting Simulium (Chirostilbia) pertinax (Kollar, 1832) larvae from Caraguatatuba, State of São Paulo, Brazil, by molecular and morphological characterization.
View Article and Find Full Text PDFParasitology
June 2001
Institute of Marine Research, Department of Aquaculture, Bergen, Norway.
Intrapredatorus barri, a microsporidian parasite of the predator mosquito Culex fuscanus Wiedemann has been shown to be heterosporous. In many features this species has been reported to be similar to Amblyospora trinus, another microsporidian parasite of a different predator mosquito which was thus proposed for reassignation to the genus Intrapredatorus. In this report small subunit rDNA has been sequenced from I.
View Article and Find Full Text PDFJ Invertebr Pathol
November 1998
Personal de apoyo CIC, CEPAVE, Calle 2, No. 584, La Plata, 1900, Argentina.
This study documents the involvement of a copepod intermediate host in the life cycle of Amblyospora dolosi from the neotropical mosquito Culex dolosus in Argentina. Meiospores of A. dolosi from the mosquito host were infectious per os to female adults of the copepod Metacyclops mendocinus.
View Article and Find Full Text PDFJ Protozool
May 1990
School of Public Health, Department of Epidemiology, University of California, Los Angeles 90024-1772.
The complete life cycle of Amblyospora campbelli (Kellen and Wills, 1962) (Microsporida: Amblyosporidae) requires a two-host system involving the mosquito host, Culiseta incidens (Thomson), and an obligatory intermediate copepod host. The parasite has dimorphic spore development producing meiospores (haploid condition) and binucleated spores (diploid condition), either as an exclusive infection or simultaneously (within females only). This is the 1st known report of concurrent spore development within an adult mosquito host, and, therefore, shows the Amblyospora campbelli system to be uniquely different from other Amblyospora spp.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!