The proinflammatory cytokine interleukin-1β plays an important role in protecting the host against airway infection; however, it can also trigger a massive influx of neutrophils into the airways, causing tissue damage. Anti-inflammatory treatments are particularly in demand for patients suffering from chronic inflammatory diseases. Sophora flavescens is a traditional herbal medicine used to reduce inflammation, but no study has examined its ability to block IL-1β production. Here, we show that S. flavescens reduced the Pseudomonas aeruginosa-induced expression of IL-1β by lung epithelial cells and macrophages. S. flavescens was also effective at reducing IL-1β production induced by either Staphylococcus aureus or phorbol 12-myristate 13-acetate, indicating that the effect is generalizable to diverse inflammatory stimuli. In addition, S. flavescens blocked the phosphorylation of IKKα/β, key upstream kinases involved in the degradation of IκBα, and the cleavage of caspase-1, a key component of the inflammasome. Thus, this study demonstrates that S. flavescens exerts its anti-inflammatory effects by blocking P. aeruginosa-mediated NF-κB/inflammasome activation and the subsequent production of IL-1β.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12275-014-4512-3DOI Listing

Publication Analysis

Top Keywords

il-1β production
12
pseudomonas aeruginosa-induced
8
sophora flavescens
8
flavescens
6
il-1β
5
aeruginosa-induced il-1β
4
production
4
production inhibited
4
inhibited sophora
4
flavescens nf-κb/inflammasome
4

Similar Publications

Drug Development.

Alzheimers Dement

December 2024

Biogen, Cambridge, MA, USA.

Background: Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by the formation of amyloid-beta (Aβ) plaques and neurofibrillary tangles (NFTs) composed of tau aggregates. Research in animal models has generated hypotheses on the underlying mechanisms of the interaction between Aβ and tau pathology. In support of this interaction, results from clinical trials have shown that treatment with anti-Aβ monoclonal antibodies (mAbs) affects tau pathology.

View Article and Find Full Text PDF

Background: Immunotherapy of Alzheimer's disease (AD) is a promising approach to reducing the accumulation of beta-amyloid, a critical event in the onset of the disease. Targeting the group II metabotropic glutamate receptors, mGluR2 and mGluR3, could be important in controlling Aβ production, although their respective contribution remains unclear due to the lack of selective tools.

Method: 5xFAD mice were chronically treated by a brain penetrant camelid single domain antibody (VHH or nanobody) that is an activator of mGluR2.

View Article and Find Full Text PDF

Background: Genetic studies indicate a causal role for microglia, the innate immune cells of the central nervous system (CNS), in Alzheimer's disease (AD). Despite the progress made in identifying genetic risk factors, such as CD33, and underlying molecular changes, there are currently limited treatment options for AD. Based on the immune-inhibitory function of CD33, we hypothesize that inhibition of CD33 activation may reverse microglial suppression and restore their ability to resolve inflammatory processes and mitigate pathogenic amyloid plaques, which may be neuroprotective.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Actinogen Medical, Sydney, Australia.

Background: Selecting the optimal dose for clinical development is especially problematic for drugs directed at CNS-specific targets. For drugs with a novel mechanism of action, these problems are often greater. We describe Xanamem's clinical pharmacology, including the approach to dose selection and proof-of-concept studies.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Xuanwu Hospital, Capital Medical University, Beijing, Beijing, China.

Background: Effective early intervention of mild cognitive impairment (MCI) is the key for preventing dementia. However, there is currently no drug for MCI. As a multi-targeted neuroprotective agent, butylphthalide has been demonstrated to repair cognition in patients with vascular cognitive impairment, and has the potential to treat MCI due to Alzheimer's disease (AD).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!