Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.tmaid.2014.10.014 | DOI Listing |
Comput Methods Biomech Biomed Engin
January 2025
Department of Mathematics, Faculty of Mathematics, Statistics and Computer Sciences, Semnan University, Semnan, Iran.
This paper presents a fractional-order model using the Caputo differential operator to study Ebola Virus Disease (EVD) dynamics, calibrated with Liberian data. The model demonstrates improved accuracy over integer-order counterparts, particularly in capturing behavioral changes during outbreaks. Stability analysis, Lyapunov functions, and a validated numerical method strengthen its mathematical foundation.
View Article and Find Full Text PDFExpert Opin Drug Deliv
January 2025
PanTherapeutics, Lutry, Switzerland.
Introduction: Viral vectors have proven useful for delivering genetic information, such as drugs and vaccines, for therapeutic and prophylactic interventions. Self-amplifying RNA viruses possess the special feature of high-level RNA amplification in the host cell cytoplasm providing high antigen production against infectious pathogens and various types of cancers, and expression of anti-tumor genes, toxic genes, and immunostimulatory genes.
Areas Covered: Self-amplifying RNA viral vectors have been evaluated in animal models and clinical trials for immune responses and protection against challenges with pathogenic infectious agents and tumor cells.
Front Chem
December 2024
Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Chennai, Tamil Nadu, India.
Ebola and Marburg viruses, biosafety level 4 pathogens, cause severe hemorrhaging and organ failure with high mortality. Although some FDA-approved vaccines or therapeutics like Ervebo for Zaire Ebola virus exist, still there is a lack of effective therapeutics that cover all filoviruses, including both Ebola and Marburg viruses. Therefore, some anti-filovirus drugs such as Pinocembrin, Favipiravir, Remdesivir and others are used to manage infections.
View Article and Find Full Text PDFCell
December 2024
Schaller Research Groups, Department of Infectious Diseases, Virology, Heidelberg University, Heidelberg, Germany; BioQuant, Heidelberg University, Heidelberg, Germany. Electronic address:
Sci Adv
January 2025
Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242, USA.
Ebola virus (EBOV) causes severe human disease. During late infection, EBOV virions are on the skin's surface; however, the permissive skin cell types and the route of virus translocation to the epidermal surface are unknown. We describe a human skin explant model and demonstrate that EBOV infection of human skin via basal media increases in a time-dependent and dose-dependent manner.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!