Objective: To study whether fragmentation of human embryos is related to the progression through meiotic and mitotic cell cycles.

Design: This report consists of two observational studies.

Setting: Not applicable.

Patient(s): A total of 1,943 oocytes from 297 patients and 372 embryos from 100 patients were imaged in the Polscope instrument and monitored in the Embryoscope, respectively.

Intervention(s): Completion of the first meiotic division was determined by visualization of the meiotic metaphase II spindle in human oocytes, and the duration of the first three mitotic cell cycles was determined with time-lapse microscopy. The percentage of embryo fragmentation was recorded 42-45 hours after insemination.

Main Outcome Measure(s): Appearance of the meiotic spindle; durations of the first, second, and third mitoses.

Result(s): Human embryos with a low degree of fragmentation (<10%) at 42-45 hours after insemination originated from oocytes with an early appearance of the meiotic spindle (mean 35.5 hours after hCG injection), early first mitosis (28.2 hours after insemination), late start of the second mitosis (38.0 hours after insemination), and a shorter duration of the third mitosis (1.1 hours). Highly fragmented embryos (>50% fragmentation) originated from oocytes with a late-appearing meiotic spindle (36.5 hours after hCG injection), delayed initiation of the first mitosis (29.8 hours after insemination), early start of the second mitosis (36.4 hours after insemination), and a longer duration of the third mitotic cell cycle (4.1 hours).

Conclusion(s): The observed associations suggest that the process of fragmentation of in vitro-derived embryos was related to the progress of the meiotic and the mitotic cell cycles.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fertnstert.2014.10.031DOI Listing

Publication Analysis

Top Keywords

mitotic cell
20
meiotic mitotic
12
cell cycles
12
fragmentation human
8
embryos progression
8
progression meiotic
8
human embryos
8
meiotic spindle
8
hours insemination
8
meiotic
7

Similar Publications

The PWWP domain is a conserved motif unique to eukaryotes, playing a critical role in various cellular processes. Proteins containing the PWWP domain are typically found in chromatin, where they bind to DNA and histones in nucleosomes, facilitating chromatin-associated functions. Among these proteins, PWWP-domain containing proteins 2A and 2B (PWWP2A and PWWP2B), identified during the H2A interactome analysis, are DNA methyltransferase-related proteins, that are structurally disordered, except for their PWWP domain.

View Article and Find Full Text PDF

Embryonal tumors with multilayered rosettes (ETMRs) are rare and highly aggressive embryonal central nervous system tumors that predominantly affect infants younger than 3 years old. These tumors typically have a C19MC alteration (ETMR, C19MC-altered) or, more rarely, a DICER1 mutation (ETMR, DICER1-mutated). Post-chemotherapeutic or post-chemoradiotherapeutic histological changes of C19MC-altered ETMRs, such as maturation or loss of histological characteristics of ETMR have been described in several reports.

View Article and Find Full Text PDF

Centromere inactivation during aging can be rescued in human cells.

Mol Cell

January 2025

Center for Cancer Research, National Cancer Institute/NIH, Bethesda, MD 20892, USA. Electronic address:

Aging involves a range of genetic, epigenetic, and physiological alterations. A key characteristic of aged cells is the loss of global heterochromatin, accompanied by a reduction in canonical histone levels. In this study, we track the fate of centromeres in aged human fibroblasts and tissues and in various cellular senescent models.

View Article and Find Full Text PDF

Hyphopichia pseudoburtonii, is emerging as a potential biocontrol agent against various phytopathogens. These traits have been attributed to the production of various antifungal compounds in the presence of target pathogens. However, the broad molecular mechanisms involved in the antifungal activity are not yet understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!