The prime position of the insulin-like growth factor 1 receptor (IGF-1R), at the head of the principle mitogenic and anti-apoptotic signalling cascades, along with the resilience to transformation of IGF-1R deficient cells fuelled great excitement for its anti-cancer targeting. Yet its potential has not been fulfilled, as clinical trial results fell far short of expectations. Advancements in understanding of other receptors' function have now begun to shed light on this incongruity, with the now apparent parallels highlighting the immaturity of our understanding of IGF-1R biology, with the model used for drug development now recognised as having been too simplistic. Gathering together the many advancements of the field of IGF-1R research over the past decade, alongside those in the GPCR field, advocates for a major paradigm shift in our appreciation of the subtle workings of this receptor. This review will emphasise the updating of the IGF-1R's classification from an RTK, to an RTK/GPCR functional hybrid, which integrates both canonical kinase signalling with many functions characteristic of a GPCR. Recognition of the shortcomings of IGF-1R inhibitor drug development programs and the models used not only allows us to reignite the initial interest in the IGF-1R as an anti-cancer therapeutic target, but also points to the possibility of biased ligand therapeutics, which together may hold a very powerful key to unlocking the true potential of IGF-1R modulation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ghir.2014.10.002 | DOI Listing |
Mol Med Rep
March 2025
Department of Pathology, Aretaieion University Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece.
Intrauterine growth restriction (IUGR) is the second most common obstetric complication after preterm labor. Appropriate trophoblast differentiation and placental structure, growth and function are key for the maintenance of pregnancy and normal fetal growth, development and survival. Extravillous trophoblast cell proliferation, migration and invasion are regulated by molecules produced by the fetomaternal interface, including autocrine factors produced by the trophoblast, such as insulin‑like growth factor (IGF)‑1.
View Article and Find Full Text PDFMater Today Bio
February 2025
Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, 100044, China.
Recent advancements in tissue engineering have promoted the development of nerve guidance conduits (NGCs) that significantly enhance peripheral nerve injury treatment, improving outcomes and recovery rates. However, utilising tailored biomimetic three-dimensional (3D) topological porous structures combined with multiple bio-effect neurotrophic factors to create environments similar to neural tissues, regulate local immune responses, and develop a supportive microenvironment to promote peripheral nerve regeneration and repair poses significant challenges. Herein, a biomimetic extracellular matrix (ECM) NGC featuring an interconnected 3D porous network and sustained delivery of insulin-like growth factor-1 (IGF-1) is designed using multi-functional gelatine microcapsules (GMs).
View Article and Find Full Text PDFOrphanet J Rare Dis
December 2024
Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
Background: Meier-Gorlin syndrome (MGORS) is a rare autosomal inherited form of primordial dwarfism. Pathogenic variants in 13 genes involved in DNA replication initiation have been identified in this disease, but homozygous intronic variants have never been reported. Additionally, whether growth hormone (GH) treatment can increase the height of children with MGORS is unclear.
View Article and Find Full Text PDFJ Cell Mol Med
January 2025
Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
Due to considerable tumour heterogeneity, stomach adenocarcinoma (STAD) has a poor prognosis and varies in response to treatment, making it one of the main causes of cancer-related mortality globally. Recent data point to a significant role for metabolic reprogramming, namely dysregulated lactic acid metabolism, in the evolution of STAD and treatment resistance. This study used a series of artificial intelligence-related approaches to identify IGFBP7, a Schlafen family member, as a critical factor in determining the response to immunotherapy and lactic acid metabolism in STAD patients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!