The expression of the newly described human retinoic acid receptor alpha (RAR alpha) in six nonlymphoid and six lymphoid leukemia cell lines and nine freshly obtained samples of leukemia cells from patients with acute nonlymphoid leukemia was assessed by Northern blot analysis, using a full length cDNA clone of RAR alpha as probe. RAR alpha was expressed in all 12 cell lines and in all fresh leukemia samples as two major transcripts of 2.6 and 3.5 kb in size. Levels of RAR alpha expression and transcript sizes in retinoid-sensitive cells (such as HL60 or fresh promyelocytic leukemia cells) were not different from those in other samples. Moreover, expression of RAR alpha was not significantly modulated by exposure to cis-retinoic acid (cisRA) in either cisRA-responsive or unresponsive cells. By using a 3' fragment of the RAR alpha gene as a probe, we confirmed that the transcripts visualized did not represent the homologous RAR beta gene. RAR alpha appears to be expressed in most human leukemia cells regardless of the type of biologic response to retinoic acid.
Download full-text PDF |
Source |
---|
J Alzheimers Dis
January 2025
Department of Neurology, The Seventh Medical Center of PLA General Hospital, Beijing, China.
Disruption of circadian rest-activity rhythm (RAR) has been found in many neurological disorders. In this study, actigraphic data were collected and analyzed to identify the RAR pattern in the elderly with cerebral small vessel disease. 115 cerebral small vessel disease (CSVD) cases were recruited.
View Article and Find Full Text PDFContraception
January 2025
Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, College of Pharmacy, University of Minnesota, 717 Delaware Street, SE, 55414, United States. Electronic address:
Genetic studies in mice have demonstrated that retinoic acid receptor alpha (RARα) deficiency leads to male infertility without affecting overall viability, suggesting that pharmacological inhibition of this receptor could be a viable contraceptive strategy. This review describes the use of experimental approaches to develop RARα-selective antagonists for male contraception. Initial studies with BMS-189453, a pan-RAR antagonist, showed significant testicular degeneration and reversible infertility in mice.
View Article and Find Full Text PDFJ Transl Med
December 2024
Department of Thoracic Surgery, School of Clinical Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan University, No.7, Wei Wu Road, Jinshui District, Zhengzhou, Henan, 450003, China.
Background: The RAR-related orphan receptor alpha (RORA), a circadian clock molecule, is highly associated with anti-oncogenes. In this paper, we defined the precise action and mechanistic basis of RORA in ESCC development under hypoxia.
Methods: Expression analysis was conducted by RT-qPCR, western blotting, immunofluorescence (IF), and immunohistochemistry (IHC) assays.
Genet Med
December 2024
Genetics Department, Hospices Civils de Lyon, Lyon, France; Neuromyogene Institute, Pathology and Genetics of neuron and muscle, CNRS UMR 5261 INSERM U1315, University of Lyon - Université Claude Bernard Lyon 1, Lyon, France. Electronic address:
Materials (Basel)
December 2024
Department of Prosthetic Dentistry, UKR University Hospital Regensburg, 93042 Regensburg, Germany.
This in vitro study investigated how varying magnifications (5×, 10×, 20×, and 50×) using a confocal laser scanning microscope (CLSM) influence the measured surface roughness parameters, R/S and R/S, of various materials with two surface treatments. Cylindrical specimens (d ≈ 8 mm, h ≈ 3 mm, = 10) from titanium, zirconia, glass-ceramic, denture base material, and composite underwent diamond treatment (80 μm; wet) and polishing (#4000; wet; Tegramin-25, Struers, G). The surface roughness parameters (R/S, R/S) were measured with a CLSM (VK-100, Keyence, J) at 5×, 10×, 20×, and 50× magnifications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!