Sweet proteins represent a class of natural molecules, which are extremely interesting regarding their potential use as safe low-calories sweeteners for individuals who need to control sugar intake, such as obese or diabetic subjects. Punctual mutations of amino acid residues of MNEI, a single chain derivative of the natural sweet protein monellin, allow the modulation of its taste. In this study we present a structural and functional comparison between MNEI and a sweeter mutant Y65R, containing an extra positive charge on the protein surface, in conditions mimicking those of typical beverages. Y65R exhibits superior sweetness in all the experimental conditions tested, has a better solubility at mild acidic pH and preserves a significant thermal stability in a wide range of pH conditions, although slightly lower than MNEI. Our findings confirm the advantages of structure-guided protein engineering to design improved low-calorie sweeteners and excipients for food and pharmaceutical preparations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2014.10.151DOI Listing

Publication Analysis

Top Keywords

sweet protein
8
design sweet
4
protein
4
protein based
4
based sweeteners
4
sweeteners hints
4
hints structure-function
4
structure-function relationships
4
relationships sweet
4
sweet proteins
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!