Simulated gastrointestinal digestion reduces the allergic reactivity of shrimp extract proteins and tropomyosin.

Food Chem

Immunology Department, IIS-Fundación Jiménez Díaz, Spain; CIBER de Enfermedades Respiratorias (CIBERES), Spain. Electronic address:

Published: April 2015

Shrimp are highly allergenic foods. Current management are limited to the avoidance of foods. Therefore, there is an unmet need for a safe and effective therapy using modified allergens. This study focuses on assessing the potential for modification of the allergenicity of shrimp proteins following heat treatment or simulated gastric digestion. Shrimp proteins do not reduce their IgE reactivity after heat treatment but it is reduced by simulated gastric digestion in a time- and dose-dependent manner. Tropomyosin in shrimp extract is worse digested than purified tropomyosin. After 60 min of 10 U/μg pepsin digestion, a strong inhibition was produced in the in vivo skin reactivity of shrimp extracts and in activation of basophils from allergic patients. Immunisation experiments performed in rabbits demonstrated that digested boiled shrimp extract is able to induce IgG antibodies that block the IgE binding to the untreated boiled shrimp extract in shrimp-allergic patients. Building on our observations, digestion treatment could be an effective method for reducing shrimp allergenicity while maintaining the immunogenicity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2014.10.063DOI Listing

Publication Analysis

Top Keywords

shrimp extract
16
shrimp
9
reactivity shrimp
8
tropomyosin shrimp
8
shrimp proteins
8
heat treatment
8
simulated gastric
8
gastric digestion
8
boiled shrimp
8
digestion
5

Similar Publications

Food allergies are a global health problem that continues to grow annually, with a prevalence of more than 10%. Shrimp allergy is the most common and life-threatening allergy. There is no cure for food allergies, but shrimp allergen extract (SAE) offers promise as a treatment through allergen-specific immunotherapy (AIT).

View Article and Find Full Text PDF

Marine animals, especially shrimp species, have gained interest in research, due to the fact that they contain a plethora of biomolecules, specifically lipids, which have been proven to possess many health benefits in various diseases linked to chronic inflammation or other exogenous factors. This review refers to the lipid composition of a large number of shrimp species, as well as the effects that can alternate the lipid content of these crustaceans. Emphasis is given to the potent anti-inflammatory, antioxidant, and antithrombotic properties of shrimp bioactives, as well as the effects that these bioactives hold in other diseases, such as cancer, diabetes, neurodegenerative disorders, and more.

View Article and Find Full Text PDF

(Family: Fabaceae) is traditionally used in Ayurvedic medicine for various medicinal purposes, including as a treatment for wounds, leprosy, skin diseases, fever, diabetes, etc. Although the root and stem of this plant have a significant medicinal value, there was little research on the leaves of this plant. This study aimed to investigate the qualitative phytochemical profile and evaluate the in vitro cytotoxic, anti-inflammatory, antioxidant, and antiarthritic activities, as well as the in vivo anti-inflammatory and analgesic activities, of leaf extract.

View Article and Find Full Text PDF

This research is focused on the formulation and testing of green visual pH-sensitive indicators based on natural extracts from Curcuma Longa (CUR) and Lambrusco wine pomace (LAM), an Italian wine variety, incorporated into rice starch/pectin/alginate matrixes for non-destructively detecting shrimps freshness in real-time. The effect of the mixed indicators and their synergic combination on the properties and performances of indicators was investigated. Both the extracts and their combination showed pronounced pH responsiveness.

View Article and Find Full Text PDF

Titanate-polyurethane-chitosan ternary nanocomposite as an efficient coating for steel against corrosion.

Sci Rep

December 2024

Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef, 62511, Egypt.

In this study, a titanate-polyurethane-chitosan ternary nanocomposite was prepared by physical mixing. Sodium titanate nanotubes (Na-TNTs) were prepared by the hydrothermal method, and chitosan was extracted from shrimp shell. Na-TNTs were mixed with polyurethane (PU) of different ratios by weight, and chitosan was added after optimization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!