Ultrasound radiation from a three-layer thermoacoustic transformation device.

Ultrasonics

Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe 610-0321, Japan. Electronic address:

Published: March 2015

A thermophone is a thermoacoustic transducer, which generates sound via time-varying Joule heating of an electrically conductive layer, which leads to expansion and contraction of a small pocket of air near the surface of the film. In this work, a 10-μm-thick Ag-Pd conductive film was coupled with heat-insulating and heat-releasing layers to fabricate a three-layer thermophone for generating ultrasound. The heat-insulating layer was 47 μm thick, and was made of glass. The heat-releasing layer was 594 μm thick, and was made of 94% alumina. Because of the simple sound-generation mechanism, which does not require mechanical moving parts, the Ag-Pd conductive film on the glass substrate can produce ultrasound radiation with broadband frequency characteristics, where exiting commercial electrode materials were used. We also demonstrate that the measured directivity patterns are in good agreement with theoretical predictions, assuming a rectangular diaphragm with the same size as the metallic film.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ultras.2014.10.019DOI Listing

Publication Analysis

Top Keywords

ultrasound radiation
8
ag-pd conductive
8
conductive film
8
μm thick
8
radiation three-layer
4
three-layer thermoacoustic
4
thermoacoustic transformation
4
transformation device
4
device thermophone
4
thermophone thermoacoustic
4

Similar Publications

Synchronized acoustic emission and high-speed imaging of cavitation-induced atomization: The role of shock waves.

Ultrason Sonochem

January 2025

School of Engineering Computing and Mathematics, Oxford Brookes University, Oxford, UK; Department of Materials, University of Oxford, Oxford, UK.

This study experimentally investigates the role of cavitation-induced shock waves in initiating and destabilizing capillary (surface) waves on a droplet surface, preceding atomization. Acoustic emissions and interfacial wave dynamics were simultaneously monitored in droplets of different liquids (water, isopropyl alcohol and glycerol), using a calibrated fiber-optic hydrophone and high-speed imaging. Spectral analysis of the hydrophone data revealed distinct subharmonic frequency peaks in the acoustic spectrum correlated with the wavelength of capillary waves, which were optically captured during the onset of atomization from the repetitive imploding bubbles.

View Article and Find Full Text PDF

Background: With increasing evidence supporting three-dimensional (3D) automated breast (AB) ultrasound (US) for supplemental screening of breast cancer in increased-risk populations, including those with dense breasts and in limited-resource settings, there is an interest in developing more robust, cost-effective, and high-resolution 3DUS imaging techniques. Compared with specialized ABUS systems, our previously developed point-of-care 3D ABUS system addresses these needs and is compatible with any conventional US transducer, which offers a cost-effective solution and improved availability in clinical practice. While conventional US transducers have high in-plane resolution (axial and lateral), their out-of-plane resolution is constrained by the poor intrinsic elevational US resolution.

View Article and Find Full Text PDF

Ultrasonic vocalisations in the Flinders Sensitive Line rat, a genetic animal model of depression.

Acta Neuropsychiatr

January 2025

Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.

Objective: Ultrasonic vocalisations (USVs) emitted by rats may reflect affective states. Specifically, 50 kHz calls emitted during juvenile playing are associated with positive affect. Given that depression is characterised by profound alterations in this domain, we proposed that USV calls may configure a suitable tool for assessing depressive-like states.

View Article and Find Full Text PDF

Radiography may not be accurate in assessing acute ankle sprains in children.

J Orthop Surg Res

January 2025

Department of Gastrointestinal Surgery, The First Hospital of Wuhan City, No. 215 Zhong-shan Road, Qiaokou District, Wuhan City, Wuhan, 430022, PR China.

Background: Acute ankle sprains are among the most common injuries in children and are often associated with chondral avulsion fractures and ligament injuries. However, radiography may not be sufficiently accurate for assessing cartilage and ligament injuries in children. The primary purpose of this study was to evaluate the necessity of radiography in the diagnosis of acute ankle sprains in children.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!