Surface-enhanced Raman spectroscopy detection of dopamine by DNA Targeting amplification assay in Parkisons's model.

Biosens Bioelectron

Department of Chemical & Biomolecular Engineering, Sogang University, Seoul 121-742, South Korea. Electronic address:

Published: May 2015

Dopamine is a potent neuromodulator in the brain that influences a variety of motivated behaviors and is involved in several neurologic diseases. We evaluated a bio-barcode amplification assay for its ability to detect dopamine in a mouse model with and without prior administration of the neurotoxin 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP). Our approach uses a combination of DNA barcodes and bead-based immunoassays for detecting neurotransmitters with surface-enhanced Raman spectroscopy (SERS). This method relies on a gold nanoplate with adsorbed antibodies and gold nanoparticles that are encoded with DNA and antibodies that can sandwich the target protein captured by the nanoparticle-bound antibodies. C57BL/6 mice were infused intranasally with MPTP (25mg/kg/day) over 7 consecutive days. At 7 and 21 days after the last administration of MPTP, dopamine was found by western blot analysis to have decreased in the midbrain by 37.44% and 92.95%, respectively. Furthermore, the Raman intensity of dopamine in the midbrains of MPTP-treated mice decreased by 56.77% and 61.12% on days 7 and 21, respectively. Our results demonstrate that the concentration of dopamine in midbrain and striatum of MPTP-treated mice can be easily detected using the bio-barcode assay, which is a rapid, high-throughput screening tool for detecting neurotransmitters.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2014.10.049DOI Listing

Publication Analysis

Top Keywords

surface-enhanced raman
8
raman spectroscopy
8
amplification assay
8
detecting neurotransmitters
8
mptp-treated mice
8
dopamine
6
spectroscopy detection
4
detection dopamine
4
dopamine dna
4
dna targeting
4

Similar Publications

In this study, we have investigated the surface-enhanced Raman scattering (SERS) spectra of myoglobin on silver substrates with different morphology. The aim was to determine the optimal parameters of analyte and substrate preparation for obtaining of high-amplitude SERS spectra of proteins. It is shown that not only the morphology of the silver film, but also the method of analyte molecules deposition on the SERS substrate plays an important role.

View Article and Find Full Text PDF

Multifunctional SERS Chip for Biological Application Realized by Double Fano Resonance.

Nanomaterials (Basel)

December 2024

Guangdong Provincial Key Laboratory of Photonics Information Technology, Guangdong University of Technology, Guangzhou 510006, China.

The in situ and label-free detection of molecular information in biological cells has always been a challenging problem due to the weak Raman signal of biological molecules. The use of various resonance nanostructures has significantly advanced Surface-enhanced Raman spectroscopy (SERS) in signal enhancement in recent years. However, biological cells are often immersed in different formulations of culture medium with varying refractive indexes and are highly sensitive to the temperature of the microenvironment.

View Article and Find Full Text PDF

Two-dimensional materials with a nanostructure have been introduced as promising candidates for SERS platforms for sensing application. However, the dynamic control and tuning of SERS remains a long-standing problem. Here, we demonstrated active tuning of the enhancement factor of the first- and second-order Raman mode of monolayer (1L) MoS transferred onto a flexible metallic nanotip array.

View Article and Find Full Text PDF

Surface-enhanced Raman scattering (SERS) is a powerful optical sensing platform that amplifies the target signals by Raman scattering. Despite SERS enabling a meager detection limit, even at the single-molecule level, SERS also tends to equally enhance unwanted molecules due to the non-specific binding of noise molecules in clinical samples, which complicates its use in complex samples such as bodily fluids, environmental water, or food matrices. To address this, we developed a novel non-fouling biomimetic SERS sensor by self-assembling an anti-adhesive, anti-fouling, and size-selective Lubricin (LUB) coating on gold nanoparticle (AuNP) functionalized glass slide surfaces via a simple drop-casting method.

View Article and Find Full Text PDF

The detection and analysis of cancer cell exosomes with high sensitivity and precision are pivotal for the early diagnosis and treatment strategies of prostate cancer. To this end, a microfluidic chip, equipped with a cactus-like array substrate (CAS) based on surface-enhanced Raman spectroscopy (SERS) was designed and fabricated for the detection of exosome concentrations in Lymph Node Carcinoma of the Prostate (LNCaP). Double layers of polystyrene (PS) microspheres were self-assembled onto a polyethylene terephthalate (PET) film to form an ordered cactus-like nanoarray for detection and analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!