Microalgal biofuels are not yet economically viable due to high material and energy costs associated with production process. Microalgae cultivation is a water-intensive process compared to other downstream processes for biodiesel production. Various studies found that the production of 1 L of microalgal biodiesel requires approximately 3000 L of water. Water recycling in microalgae cultivation is desirable not only to reduce the water demand, but it also improves the economic feasibility of algal biofuels as due to nutrients and energy savings. This review highlights recently published studies on microalgae water demand and water recycling in microalgae cultivation. Strategies to reduce water footprint for microalgal cultivation, advantages and disadvantages of water recycling, and approaches to mitigate the negative effects of water reuse within the context of water and energy saving are also discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2014.10.140 | DOI Listing |
J Chromatogr Sci
January 2025
Characteristic Biology Resources Research Center, Northwest Institute of Plateau Biology, Chinese Academy of Science, No. 23, Xinning Road, Chengxi District, Xining, Qinghai 810001, P. R. China.
Separation of polar compounds especially with similar polarities is challenging. In the present study, three polar compounds with similar polarities, including gentiopicroside, sweroside and mangiferin, have been successfully separated from Swertia mussotii by a combination of two counter-current chromatography modes. With the selected solvent system of ethyl acetate/n-butanol/water (8/2/10, v/v), a continuous injection mode was firstly employed.
View Article and Find Full Text PDFMicrobiol Spectr
January 2025
Department of Biology and Chemistry, Changwon National University, Changwon, South Korea.
Unlabelled: Global aquaculture production faces the challenge of biologically cycling nitrogenous waste. Biofloc technology (BFT) systems offer the potential to reduce water consumption and eliminate waste products by using beneficial microorganisms to convert waste into usable nutrients or non-toxic molecules. Unlike flow-through systems (FTS), which depend on continuous water exchange and result in higher operational costs as well as limited microbiome stability, BFT operates without the need for constant water exchange.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Research Center for Solar Energy Chemistry and Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531, Japan.
Photocatalytic transformation of nitrate (NO) in wastewater into ammonia (NH) is a challenge in the detoxification and recycling of limited nitrogen resources. In particular, previously reported photocatalysts cannot promote the reaction using water as an electron donor. Herein, we report that copper-doped titanium dioxide (Cu-TiO) powders, prepared via the sol-gel method and subsequent calcination, promote NO-to-NH reduction in water.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China.
The increasing demand for energy in cooling systems due to global warming presents a significant challenge. Conventional air-conditioning methods exacerbate climate change by contributing to heightened carbon emissions. Glass facades, renowned in modern architecture for their versatility and aesthetic appeal, inadvertently trap solar radiation, resulting in heat buildup and the greenhouse effect.
View Article and Find Full Text PDFChempluschem
January 2025
China University of Mining and Technology, School of electrical and power engineering, NO.1, Daxue Road, 221116, Xuzhou, CHINA.
The mining industry produces a large amount of industrial solid waste every year. Among them, fly ash (FA), slag and tailings are the three main solid wastes, which can cause soil pollution, air pollution, water pollution and serious threat to human health if not handled properly. At present, the treatment methods of industrial solid waste mainly include direct landfill, recovery of high-value components, production of construction materials, etc.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!