A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Loss of PBRM1 and BAP1 expression is less common in non-clear cell renal cell carcinoma than in clear cell renal cell carcinoma. | LitMetric

AI Article Synopsis

  • The study focused on the prevalence of PBRM1 and BAP1 mutations in different types of kidney tumors, particularly comparing clear cell renal cell carcinoma (ccRCC) to non-clear cell variants and renal oncocytoma (RO).
  • Out of 458 patients tested, there was a significant loss of PBRM1 (43%) and BAP1 (10%) staining in ccRCC, whereas almost no loss of these proteins was found in non-ccRCC tumors, such as papillary RCC, chromophobe RCC, and RO.
  • The findings indicate that the inactivation of PBRM1 and BAP1 is primarily associated with ccRCC, suggesting alternative mechanisms may

Article Abstract

Background: Recurrent mutations in polybromo-1 (PBRM1, ~40%) and BRCA1-associated protein-1 (BAP1, ~10%) occur in clear cell renal cell carcinoma (ccRCC), but their prevalence in non-ccRCC or renal oncocytoma (RO) is unknown. We evaluated loss of PBRM1 and BAP1 staining in ccRCC, papillary RCC (pRCC), chromophobe RCC (chRCC), and RO tumors using an immunohistochemistry assay in which negative staining was associated with loss-of-function mutations.

Methods: We identified 458 patients treated surgically for ccRCC, pRCC, chRCC, and RO between 2004 and 2012. We performed immunohistochemistry assays to evaluate PBRM1 and BAP1 protein expression to classify tumors as PBRM1 or BAP1 negative. We compared loss of staining of these 2 proteins in ccRCC and non-ccRCC using the Fisher exact test.

Results: For the total cohort of 458 patients, we successfully stained both PBRM1 and BAP1 in 408 tumor samples. Consistent with the mutation rate, loss of PBRM1 and BAP1 staining occurred in 43% (80/187) and 10% (18/187) of ccRCC cases, respectively. However, loss of PBRM1 staining occurred in only 3% (2/59), 6% (1/17), and 0% (0/34) of pRCC, chRCC, and RO tumors, respectively (P<0.0001). BAP1 loss was not observed in any of the pRCC (n = 61), chRCC (n = 17), or RO (n = 34) tumors, (P = 0.00021).

Conclusion: Our data suggest that biallelic inactivation of PBRM1 or BAP1 is less common in non-ccRCC when compared with ccRCC tumors. These findings suggest that loss of PBRM1 or BAP1 are key events in ccRCC, whereas other pathways may support tumorigenesis in non-ccRCC subtypes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4274200PMC
http://dx.doi.org/10.1016/j.urolonc.2014.10.014DOI Listing

Publication Analysis

Top Keywords

pbrm1 bap1
24
loss pbrm1
16
cell renal
12
renal cell
12
cell carcinoma
12
clear cell
8
bap1 staining
8
chrcc tumors
8
458 patients
8
prcc chrcc
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!