Electroacupuncture (EA) has been used worldwide to treat demyelinating diseases, but its therapeutic mechanism is poorly understood. In this study, a custom-designed model of compressed spinal cord injury (CSCI) was used to induce demyelination. Zusanli (ST36) and Taixi (KI3) acupoints of adult rats were stimulated by EA to demonstrate its protective effect. At 14 days after EA, both locomotor skills and ultrastructural features of myelin sheath were significantly improved. Phenotypes of proliferating cells were identified by double immunolabeling of 5-ethynyl-2'-deoxyuridine with antibodies to cell markers: NG2 [oligodendrocyte precursor cell (OPC) marker], 2',3'-cyclic-nucleotide 3'-phosphodiesterase (CNPase) (oligodendrocyte marker), and glial fibrillary acidic protein (GFAP) (astrocyte marker). EA enhanced the proliferation of OPCs and CNPase, as well as the differentiation of OPCs by promoting Olig2 (the basic helix-loop-helix protein) and attenuating Id2 (the inhibitor of DNA binding 2). EA could also improve myelin basic protein (MBP) and protect existing oligodendrocytes from apoptosis by inhibiting caspase-12 (a representative of endoplasmic reticulum stress) and cytochrome c (an apoptotic factor and hallmark of mitochondria). Therefore, our results indicate that the protective effect of EA on neural myelin sheaths is mediated via promotion of oligodendrocyte proliferation and inhibition of oligodendrocyte death after CSCI.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12035-014-9022-0DOI Listing

Publication Analysis

Top Keywords

neural myelin
8
myelin sheaths
8
sheaths mediated
8
mediated promotion
8
promotion oligodendrocyte
8
oligodendrocyte proliferation
8
proliferation inhibition
8
inhibition oligodendrocyte
8
oligodendrocyte death
8
compressed spinal
8

Similar Publications

Human neural rosettes secrete bioactive extracellular vesicles enriched in neuronal and glial cellular components.

Sci Rep

January 2025

Centro de Investigación en Medicina Traslacional "Severo R. Amuchástegui" (CIMETSA), Instituto Universitario de Ciencias Biomédicas de Córdoba (IUCBC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Naciones Unidas 420, Barrio Parque Vélez Sarsfield, X5016KEJ, Córdoba, Argentina.

Extracellular vesicles (EVs) play a critical role in the development of neural cells in the central nervous system (CNS). Human neural rosettes (hNRs) are radial cell structures that assemble from induced pluripotent stem cells (hiPSCs) and recapitulate some stages of neural tube morphogenesis. Here we show that hiPSCs and hNRs secrete EVs (hiPSC-EVs and hNR-EVs) with distinctive protein cargoes.

View Article and Find Full Text PDF

Objective: Mutations in the thyroid hormone (TH) transporter monocarboxylate transporter 8 (MCT8) cause Allan-Herndon-Dudley syndrome (AHDS), a severe form of psychomotor retardation with muscle hypoplasia and spastic paraplegia as key symptoms. These abnormalities have been attributed to an impaired TH transport across brain barriers and into neural cells thereby affecting brain development and function. Likewise, Mct8/Oatp1c1 (organic anion transporting polypeptide 1c1) double knockout (M/Odko) mice, a well-established murine AHDS model, display a strongly reduced TH passage into the brain as well as locomotor abnormalities.

View Article and Find Full Text PDF

A guide to CNN-based dense segmentation of neuronal EM images.

Microscopy (Oxf)

January 2025

Department of Biomedical Data Science, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Japan.

Large-scale reconstitution of neuronal circuits from volumetric electron microscopy images is a remarkable research goal in neuroanatomy. However, the large-scale reconstruction is a result of automatic segmentation using convolutional neural networks (CNNs), which is still challenging for general researchers to perform. This review focuses on two representative CNNs for dense neuronal segmentation: flood-filling networks (FFN) and local shape descriptors (LSD)-predicting U-Net (LSD network).

View Article and Find Full Text PDF

Background And Aims: Chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) is difficult to distinguish from mimicking disorders, with misdiagnosis resulting in IVIG overutilization. We evaluate a clinical-electrophysiological model to facilitate CIDP versus mimic neuropathy prediction.

Methods: Using the European Academy of Neurology/Peripheral Nerve Society (EAN/PNS) 2021 CIDP guidelines we derived 26 clinical and 144 nerve conduction variables.

View Article and Find Full Text PDF
Article Synopsis
  • Peripuberty is a crucial time for brain development, and blocking CRFR1 receptors in young rats helps minimize negative effects of early-life stress on neural function and behavior.
  • In an experiment, male rats showed immediate behavioral changes like reduced prepulse inhibition (PPI) after receiving a CRFR1 antagonist, while females only exhibited differences in behavior after becoming adults.
  • Long-term gene expression changes in the amygdala indicate that the effects of CRFR1 blockage during peripuberty impact different neural pathways in males and females, emphasizing the importance of understanding these effects for adolescent mental health.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!