SCNT-derived ESCs with mismatched mitochondria trigger an immune response in allogeneic hosts.

Cell Stem Cell

TSI Laboratory, University Heart Center Hamburg, Martinistrasse 52, 20246 Hamburg, Germany; Cardiovascular Research Center Hamburg (CVRC) and DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Luebeck, Martinistrasse 52, 20246 Hamburg, Germany; Stanford Cardiovascular Institute and Department of Cardiothoracic Surgery, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA. Electronic address:

Published: January 2015

The generation of pluripotent stem cells by somatic cell nuclear transfer (SCNT) has recently been achieved in human cells and sparked new interest in this technology. The authors reporting this methodical breakthrough speculated that SCNT would allow the creation of patient-matched embryonic stem cells, even in patients with hereditary mitochondrial diseases. However, herein we show that mismatched mitochondria in nuclear-transfer-derived embryonic stem cells (NT-ESCs) possess alloantigenicity and are subject to immune rejection. In a murine transplantation setup, we demonstrate that allogeneic mitochondria in NT-ESCs, which are nucleus-identical to the recipient, may trigger an adaptive alloimmune response that impairs the survival of NT-ESC grafts. The immune response is adaptive, directed against mitochondrial content, and amenable for tolerance induction. Mitochondrial alloantigenicity should therefore be considered when developing therapeutic SCNT-based strategies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.stem.2014.11.003DOI Listing

Publication Analysis

Top Keywords

stem cells
12
mismatched mitochondria
8
immune response
8
embryonic stem
8
scnt-derived escs
4
escs mismatched
4
mitochondria trigger
4
trigger immune
4
response allogeneic
4
allogeneic hosts
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!