The transcription factor FoxO1 sustains expression of the inhibitory receptor PD-1 and survival of antiviral CD8(+) T cells during chronic infection.

Immunity

Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, MD 20815-6789, USA. Electronic address:

Published: November 2014

Protein kinase B (also known as AKT) and the mechanistic target of rapamycin (mTOR) are central regulators of T cell differentiation, proliferation, metabolism, and survival. Here, we show that during chronic murine lymphocytic choriomeningitis virus infection, activation of AKT and mTOR are impaired in antiviral cytotoxic T lymphocytes (CTLs), resulting in enhanced activity of the transcription factor FoxO1. Blockade of inhibitory receptor programmed cell death protein 1 (PD-1) in vivo increased mTOR activity in virus-specific CTLs, and its therapeutic effects were abrogated by the mTOR inhibitor rapamycin. FoxO1 functioned as a transcriptional activator of PD-1 that promoted the differentiation of terminally exhausted CTLs. Importantly, FoxO1-null CTLs failed to persist and control chronic viral infection. Collectively, this study shows that CTLs adapt to persistent infection through a positive feedback pathway (PD-1?FoxO1?PD-1) that functions to both desensitize virus-specific CTLs to antigen and support their survival during chronic viral infection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4270830PMC
http://dx.doi.org/10.1016/j.immuni.2014.10.013DOI Listing

Publication Analysis

Top Keywords

transcription factor
8
factor foxo1
8
inhibitory receptor
8
survival chronic
8
virus-specific ctls
8
chronic viral
8
viral infection
8
ctls
6
infection
5
foxo1 sustains
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!