Background: Pioglitazone is a thiazolidinedione drug that acts as an insulin sensitizer. We recently characterized DahlS.Z-Lepr(fa)/Lepr(fa) (DS/obese) rats, derived from a cross between Dahl salt-sensitive and Zucker rats, as a new animal model of metabolic syndrome. We have now investigated the effects of pioglitazone on cardiac and adipose tissue pathology in this model.
Methods And Results: DS/obese rats were treated with pioglitazone (2.5 mg/kg per day, per os) from 9 to 13 weeks of age. Age-matched homozygous lean (DahlS.Z-Lepr(+)/Lepr(+), or DS/lean) littermates served as controls. Pioglitazone increased body weight and food intake in DS/obese rats. It also ameliorated left ventricular (LV) hypertrophy, fibrosis, and diastolic dysfunction as well as attenuated cardiac oxidative stress and inflammation, without lowering blood pressure, in DS/obese rats, but it had no effect on these parameters in DS/lean rats. In addition, pioglitazone increased visceral and subcutaneous fat mass but alleviated adipocyte hypertrophy and inflammation in visceral adipose tissue in DS/obese rats. Furthermore, pioglitazone increased the serum concentration of adiponectin, induced activation of AMP-activated protein kinase (AMPK) in the heart, as well as ameliorated glucose intolerance and insulin resistance in DS/obese rats.
Conclusions: Treatment of DS/obese rats with pioglitazone exacerbated obesity but attenuated LV hypertrophy, fibrosis, and diastolic dysfunction, with these latter effects being associated with the activation of cardiac AMPK signaling likely as a result of the stimulation of adiponectin secretion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijcard.2014.11.099 | DOI Listing |
Biol Pharm Bull
September 2022
Drug Discovery Research, Astellas Pharma Inc.
Evidence from clinical trials suggests that the cardioprotective effects of sodium-glucose cotransporter 2 (SGLT2) inhibitors may arise through non-glycemic control-related mechanisms. Further, the cardiovascular advantages of SGLT2 inhibitors are likely present among non-diabetic patients with known cardiovascular diseases (CVDs). Here, we studied the impact of ipragliflozin, a selective SGLT2 inhibitor, on cardiac histopathology and microRNA (miRNA) expression profiles in a non-diabetic rat model of cardiomyopathy.
View Article and Find Full Text PDFPhysiol Rep
January 2022
Pathophysiology Sciences, Department of Integrated Health Sciences, Nagoya, Japan.
Phosphatidylinositol 3-kinase (PI3K) signaling promotes the differentiation and proliferation of regulatory B (Breg) cells, and the lipid phosphatase phosphatase and tensin homolog deleted on chromosome 10 (PTEN) antagonizes the PI3K-Akt signaling pathway. We previously demonstrated that cardiac Akt activity is increased and that restraint stress exacerbates hypertension and both heart and adipose tissue (AT) inflammation in DS/obese rats, an animal model of metabolic syndrome (MetS). We here examined the effects of restraint stress and pharmacological inhibition of PTEN on heart and AT pathology in such rats.
View Article and Find Full Text PDFAnn N Y Acad Sci
May 2021
Pathophysiology Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan.
Brown adipose tissue (BAT) is an endocrine organ that contributes to thermogenesis and energy consumption. We investigated the effects of salt loading and surgical removal of whitened interscapular BAT (iBAT) on cardiac and adipose tissue pathology in DahlS.Z-Lepr /Lepr (DS/obese) rats, an animal model of metabolic syndrome (MetS).
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
January 2021
Pathophysiology Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan.
Prebiotics ameliorate dysbiosis and influence metabolism and the immune system, but their effects on cardiovascular complications in metabolic disorders remain largely unknown. We here investigated the effects of the soluble fiber inulin on cardiac, adipose tissue, and hepatic pathology as well as on metabolic disorders in DahlS.Z-/ (DS/obese) rats, an animal model of metabolic syndrome (MetS).
View Article and Find Full Text PDFNutr Diabetes
August 2020
Pathophysiology Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan.
Objectives: Evidence suggests that visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) should be considered as distinct types of white fat. Although VAT plays a key role in metabolic syndrome (MetS), the role of subcutaneous adipose tissue (SAT) has been unclear. DahlS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!