Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this study, the effects of CuO nanoparticles and CuCl2·2H2O were tested on Daphnia magna under chronic exposure scenarios. During a 21-day exposure to the nanoparticles and salt, the reproduction was followed by a daily count of the number of offspring. After the exposure, the adult Daphnia length and uptake of copper was measured. The dissolved, nanoparticle and aggregated fractions were distinguished in the exposure medium. The results showed that only a small fraction of the nanoparticles dissolved, while the majority of the particles formed large aggregates (>450 nm). The dissolved fraction of the nanoparticles corresponded with the dissolved fraction of the copper salt. The effects of the nanoparticles (reproduction EC10: 0.546 mg Cu/l, EC20: 0.693 mg Cu/l, EC50: 1.041 mg Cu/l) on reproduction and length were much lower than the effects of the copper salts (reproduction EC10: 0.017 mg Cu/l, EC20: 0.019 mg Cu/l, EC50: 0.022 mg Cu/l). Based upon total body analysis, the Daphnia copper concentration appeared much higher when exposed to the nanoparticles than when exposed to the salt. These combined results indicate that the toxicity of CuO nanoparticles to D. magna is caused by copper ions formed during dissolution of the nanoparticles in the exposure medium.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2014.09.037 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!