Distinct promoters, subjected to epigenetic regulation, drive the expression of two clusterin mRNAs in prostate cancer cells.

Biochim Biophys Acta

Department of Biomedicine, Biotechnology and Translational Research, University of Parma, Via Volturno 39/a, 43126 Parma, Italy; Centre for Molecular and Translational Oncology (COMT), University of Parma, Parco Area delle Scienze 11/a, 43124 Parma, Italy; National Institute of Biostructure and Biosystems (INBB), Viale Medaglie d'Oro 305, 00136 Rome, Italy.

Published: January 2015

The human clusterin (CLU) gene codes for several mRNAs characterized by different sequences at their 5' end. We investigated the expression of two CLU mRNAs, called CLU 1 and CLU 2, in immortalized (PNT1a) and tumorigenic (PC3 and DU145) prostate epithelial cells, as well as in normal fetal fibroblasts (WI38) following the administration of the epigenetic drugs 5-aza-2'-deoxycytidine (AZDC) and trichostatin A (TSA) given either as single or combined treatment (AZDC-TSA). Our experimental evidences show that: a) CLU 1 is the most abundant transcript variant. b) CLU 2 is expressed at a low level in normal fibroblasts and virtually absent in prostate cancer cells. c) CLU 1, and to a greater extent CLU 2 expression, increased by AZDC-TSA treatment in prostate cancer cells. d) Both CLU 1 and CLU 2 encode for secreted CLU. e) P2, a novel promoter that overlaps the CLU 2 Transcription Start Site (TSS), drives CLU 2 expression. f) A CpG island, methylated in prostate cancer cells and not in normal fibroblasts, is responsible for long-term heritable regulation of CLU 1 expression. g) ChIP assay of histone tail modifications at CLU promoters (P1 and P2) shows that treatment of prostate cancer cells with AZDC-TSA causes enrichment of Histone3(Lys9)acetylated (H3K9ac) and reduction of Histone3(Lys27)trimethylated (H3K27me3), inducing active transcription of both CLU variants. In conclusion, we show for the first time that the expression of CLU 2 mRNA is driven by a novel promoter, P2, whose activity responds to epigenetic drugs treatment through changes in histone modifications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbagrm.2014.11.003DOI Listing

Publication Analysis

Top Keywords

prostate cancer
20
cancer cells
20
clu
17
clu expression
12
expression clu
8
clu clu
8
epigenetic drugs
8
normal fibroblasts
8
cells clu
8
treatment prostate
8

Similar Publications

Introduction: Prostate cancer (PCa) is the commonest urologic cancer worldwide and the leading cause of male cancer deaths in Nigeria. In Nigeria, orchidectomy remains the primary androgen deprivation therapy. Dihydrotestosterone (DHT) is the active prostatic androgen, but its relationship with PCa severity has not been extensively studied in Africa.

View Article and Find Full Text PDF

We intended to investigate the potential of several transitional zone (TZ) volume-related variables for the detection of clinically significant prostate cancer (csPCa) among lesions scored as Prostate Imaging Reporting and Data System (PI-RADS) category 3. Between September 2018 and August 2023, patients who underwent mpMRI examination and scored as PI-RADS 3 were queried from our institution. The diagnostic performances of prostate-specific antigen density (PSAD), TZ-adjusted PSAD (TZPSAD), and TZ-ratio (TZ volume/whole gland prostate volume) were analyzed.

View Article and Find Full Text PDF

Introduction: In NCCN favorable intermediate-risk (FIR) prostate cancer (PCa) patients treated with radical prostatectomy (RP), we tested the effect of upstaging and upgrading on cancer-specific mortality (CSM).

Methods: Within the SEER database (2010-2021), upstaging (≥pT3a or pN1) and upgrading (ISUP ≥3) rates in FIR RP patients were tabulated. Kaplan-Meier (KM) plots and multivariable Cox-regression models (CRMs) were fitted.

View Article and Find Full Text PDF

Dosimetric comparison of CyberKnife and conventional linac prostate SBRT plans: analysis of the PACE-B Study.

Int J Radiat Oncol Biol Phys

January 2025

The Royal Marsden NHS Foundation Trust, London SM2 5PT, UK; Radiotherapy and Imaging Division, Institute of Cancer Research, London SM2 5NG, UK.

Purpose: In the PACE-B study, a non-randomised comparison of toxicity outcomes between stereotactic body radiotherapy (SBRT) platforms revealed fewer urinary side-effects with CyberKnife (CK) compared to conventional linac (CL) SBRT. This analysis compares baseline characteristics and planning dosimetry between the CK-SBRT and CL-SBRT cohorts in PACE-B, aiming to provide insight into possible reasons for differing toxicity outcomes between the platforms.

Methods: Dosimetric parameters for the surrogate urethra (SU), contoured urethra, bladder, bladder trigone (BT), and rectum were extracted from available CT planning scans of PACE-B SBRT patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!