Seawater-driven forward osmosis (FO) is considered to be a novel strategy to concentrate nutrients in treated municipal wastewater for further recovery as well as simultaneous discharge of highly purified wastewater into the sea with low cost. As a preliminary test, the performance of FO membranes in concentrating nutrients was investigated by both batch experiments and model simulation approaches. With synthetic seawater as the draw solution, the dissolved organic carbon, phosphate, and ammonia in the effluent from a membrane bioreactor (MBR) treating municipal wastewater were 2.3-fold, 2.3-fold, and 2.1-fold, respectively, concentrated by the FO process with approximately 57% of water reduction. Most of the dissolved components, including trace metals in the MBR effluent, were highly retained (>80%) in the feed side, indicating high water quality of permeate to be discharged. The effect of membrane properties on the nutrient enrichment performance was investigated by comparing three types of FO membranes. Interestingly, a polyamide membrane possessing a high negative charge demonstrated a poor capability of retaining ammonia, which was hypothesized because of an ion exchange-like mechanism across the membrane prompted by the high ionic concentration of the draw solution. A feed solution pH of 7 was demonstrated to be an optimum condition for improving the overall retention of nutrients, especially for ammonia because of the pH-dependent speciation of ammonia/ammonium forms. The modeling results showed that higher than 10-fold concentrations of ammonia and phosphate are achievable by seawater-driven FO with a draw solution to feed solution volume ratio of 2:1. The enriched municipal wastewater contains nitrogen and phosphorous concentrations comparable with typical animal wastewater and anaerobic digestion effluent, which are used for direct nutrient recovery.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2014.11.007DOI Listing

Publication Analysis

Top Keywords

municipal wastewater
16
feed solution
12
draw solution
12
seawater-driven forward
8
forward osmosis
8
nitrogen phosphorous
8
treated municipal
8
membrane properties
8
solution feed
8
wastewater
6

Similar Publications

The neurotoxin methylmercury in seafood threatens food safety worldwide. China has implemented stringent wastewater policies, established numerous treatment facilities and enforced rigorous water quality standards to address pollution in its waterways. However, the impact of these policies on seafood safety and methylmercury exposure remains unknown.

View Article and Find Full Text PDF

One of the leading challenges in Water Resource Recovery Facility monitoring and control is the poor data quality and sensor consistency due to the tough and complex circumstances of the process operation. This paper presents a new principal component analysis fault detection approach for the nitrate and nitrite concentration sensor based on Water Resource Recovery Facility measurements, together with the Fisher Discriminant Analysis identification of fault types. Five malfunction cases were considered: constant additive error, ramp changing error in time, incorrect amplification error, random additive error, and unchanging sensor value error.

View Article and Find Full Text PDF

Roles of waste iron scraps in anammox system treating sulfide-containing wastewater: Alleviating sulfide inhibition, promoting novel anammox bacteria enrichment, and enhancing nitrogen removal capacity.

Bioresour Technol

December 2024

School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; National & Local Joint Engineering Laboratory for Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou 215009, China. Electronic address:

In this study, waste iron scraps (WIS) were exerted to alleviate sulfide inhibition on anammox bacteria and promote anammox nitrogen removal from sulfide-containing wastewater.Short-term batch experiments showed that WIS-addition led to the anammox bacteria activity increasing by 124.8 % at an initial sulfide concentration of 40 mgS/L.

View Article and Find Full Text PDF

A feasibility study on cortisol and cortisone as biomarkers for psychological stress in wastewater-based epidemiology.

Water Res

December 2024

College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian, , 116026, China. Electronic address:

Psychological stress has a significant impact on individuals' quality of life and health. Traditionally, psychological stress assessment relies on self-reported tools such as the Perceived Stress Scale (PSS), which are inherently subjective. This study aims to evaluate the feasibility of using wastewater-based epidemiology (WBE) to assess cortisol and cortisone as biomarkers for psychological stress.

View Article and Find Full Text PDF

Submerged membrane bioreactor (SMBR) is a promising technology in municipal wastewater treatment, but the membrane fouling has restricted its development. In this study, an integrated submerged ceramic membrane bioreactor (C-SMBR) was constructed to treat domestic wastewater, and the characteristics of membrane fouling and the microbial community structure were investigated. The results showed that the average removal efficiencies of COD, TN, NH-N reached 94.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!