Nitric oxide induces specific isoforms of antioxidant enzymes in soybean leaves subjected to enhanced ultraviolet-B radiation.

J Photochem Photobiol B

Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina; Área de Investigación y Desarrollo, Universidad Favaloro/CONICET, Buenos Aires, Argentina. Electronic address:

Published: December 2014

Antioxidant enzymes play a key role in plant tolerance to different types of stress, including ultraviolet-B (UV-B) radiation. Here we report that nitric oxide (NO) enhances antioxidant enzymes gene expression and increases the activity of specific isoforms protecting against UV-B radiation. Pre-treatments with sodium nitroprussiate (SNP), a NO-donor, prevented lipid peroxidation, ion leakage and H2O2 and superoxide anion accumulation in leaves of UV-B-treated soybean plants. Transcripts levels of superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) were significantly induced by SNP. These data correlated with the enhancement of particular antioxidant enzyme isoforms, such as one CAT isoform and two APX isoforms. Moreover, SNP induced the expression of three new isoforms of SOD, identified as Mn-SOD subclass. Further results showed that total activities of SOD, CAT and APX significantly increased by 2.2-, 1.8- and 2.1-fold in SNP-treated plants compared to controls, respectively. The protective effect of SNP against UV-B radiation was negated by addition of the specific NO scavenger cPTIO, indicating that NO released by SNP mediates the enhancement of antioxidant enzymes activities. In conclusion, NO is involved in the signaling pathway that up-regulates specific isoforms of antioxidant enzymes protecting against UV-B-induced oxidative stress.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jphotobiol.2014.09.019DOI Listing

Publication Analysis

Top Keywords

antioxidant enzymes
20
specific isoforms
12
uv-b radiation
12
nitric oxide
8
isoforms antioxidant
8
enhancement antioxidant
8
isoforms
6
antioxidant
6
enzymes
5
snp
5

Similar Publications

Background: Mizagliflozin (MIZ) is a specific inhibitor of sodium-glucose cotransport protein 1 (SGLT1) originally developed as a medication for diabetes.

Aim: To explore the impact of MIZ on diabetic nephropathy (DN).

Methods: Diabetic mice were created using db/db mice.

View Article and Find Full Text PDF

is an alga with high fucoxanthin, phlorotannin, fucoidan, sterol, and astaxanthin. The silver nanoparticles of (AgNPs-Fv) are expected to have high antioxidant, anti-collagenase, and antibacterial activities. The aim of this study was to characterize the distribution and size of AgNPs-Fv and determine their antioxidant, anti-collagenase, and antibacterial activities.

View Article and Find Full Text PDF

This study aimed to investigate the effects of dietary methionine (Met) supplementation on performance, immunity, and meat quality in growing Japanese quail exposed to aflatoxin B (AFB)-contaminated diets. Nine experimental diets were formulated, incorporating three levels of dietary Met (5.0, 6.

View Article and Find Full Text PDF

Paclitaxel (PAC), derived from Taxus brevifolia, is used to treat solid tumours but causes reproductive toxicity due to oxidative stress, affecting sperm quality and testicular tissue. Nerolidol (NRL), an antioxidant sesquiterpene alcohol, has not been studied for its potential to reduce PAC-induced reproductive damage. This study investigates NRL's ability to mitigate PAC-induced reproductive toxicity in rats.

View Article and Find Full Text PDF

CXCL16 promotes proliferation of head and neck squamous cell carcinoma by regulating GPX1-mediated antioxidant levels.

J Zhejiang Univ Sci B

September 2024

Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China.

Numerous studies have demonstrated that the high expression of CXC motif chemokine ligand 16 (CXCL16) in cancer correlates with poor prognosis, as well as tumor cell proliferation, migration, and invasion. While CXCL16 can serve as a tumor biomarker, the underlying mechanism in modulating head and neck squamous cell carcinoma (HNSCC) remains unclear. In this study, the aimed was to investigate the CXCL16 expression in HNSCC and to uncover the potential underlying mechanism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!