Background & Aims: The hepatitis C virus (HCV) NS3-4A protease is essential for the HCV life cycle and a prime target of antiviral treatment strategies. Protease inhibitors, however, are limited by emergence of resistance-associated amino acid variants (RAVs). The capacity to cleave and inactivate mitochondrial antiviral-signaling protein (MAVS) in the RIG-I-signaling pathway is a cardinal feature of NS3-4A, by which HCV blocks induction of interferon-(IFN)-β, thereby promoting viral persistence. Here, we aimed to investigate the impact of NS3-4A RAVs on MAVS cleavage.

Methods: The impact of NS3-4A RAVs on MAVS cleavage was assessed using immunoblot analyses, luciferase reporter assays and molecular dynamics simulations to study the underlying molecular principles. IFN-β was quantified in serum from patients with different NS3-4A RAVs.

Results: We show that macrocyclic NS3-4A RAVS with substitutions at residue D168 of the protease result in an increased capacity of NS3-4A to cleave MAVS and suppress IFN-β induction compared with a comprehensive panel of RAVs and wild type HCV. Mechanistically, we show the reconstitution of a tight network of electrostatic interactions between protease and the peptide substrate that allows much stronger binding of MAVS to D168 RAVs than to the wild-type protease. Accordingly, we could show IFN-β serum levels to be lower in patients with treatment failure due to the selection of D168 variants compared to R155 RAVs.

Conclusions: Our data constitutes a proof of concept that the selection of RAVs against specific classes of direct antivirals can lead to the predominance of viral variants with possibly adverse pathogenic characteristics.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhep.2014.11.009DOI Listing

Publication Analysis

Top Keywords

ns3-4a ravs
12
hepatitis virus
8
ns3-4a
8
macrocyclic ns3-4a
8
ifn-β induction
8
mavs cleavage
8
impact ns3-4a
8
ravs mavs
8
ravs
7
mavs
6

Similar Publications

Introduction: Hepatitis C virus (HCV) genotype 5 was originally identified in South Africa, where it represents 35-60% of all HCV infections. There are limited data on resistance-associated variants (RAVs) in South Africa. Thus, we investigated variability within the NS3/NS4A, NS5A, and NS5B genes of treatment-naïve individuals with HCV genotype 5 infection at the Dr.

View Article and Find Full Text PDF

Knowledge of the within-host frequencies of resistance-associated amino acid variants (RAVs) is important to the identification of optimal drug combinations for the treatment of hepatitis C virus (HCV) infection. Multiple RAVs may exist in infected individuals, often below detection limits, at any resistance locus, defining the diversity of accessible resistance pathways. We developed a multiscale mathematical model to estimate the pre-treatment frequencies of the entire spectrum of mutants at chosen loci.

View Article and Find Full Text PDF

Prevalence of NS5A resistance associated variants in NS5A inhibitor treatment failures and an effective treatment for NS5A-P32 deleted hepatitis C virus in humanized mice.

Biochem Biophys Res Commun

June 2018

Department of Gastroenterology and Metabolism, Institute of Biomedical & Health Science, Hiroshima University, Hiroshima, Japan; Research Center for Hepatology and Gastroenterology, Hiroshima University, Hiroshima, Japan; Laboratory for Digestive Diseases, RIKEN Center for Integrative Medical Sciences, Hiroshima, Japan. Electronic address:

Patients with chronic hepatitis C virus (HCV) infection who have failed to respond to direct-acting antiviral (DAA) treatment often acquire drug resistance-associated variants (RAVs). The NS5A-P32 deletion (P32del) RAV confers potent resistance to NS5A inhibitors; therefore, patients who acquire this deletion are likely to fail to respond to DAA re-treatment. We investigated the prevalence of N55A-P32del in patients who failed to respond to prior NS5A inhibitor treatment using direct sequencing and analyzed the efficacy of DAA combination treatment in the presence of NS5A-P32del RAVs using human hepatocyte transplanted mice.

View Article and Find Full Text PDF

Background And Objective: The direct-acting antiviral agents (DAAs) antiviral therapy has drastically improved the prognosis of hepatitis C virus (HCV) patients. However, the viral drug resistance-associated variants (RAVs) can limit the efficacy of DAAs. For the HCV-6a is not the predominant prevalent genotype; the data on the prevalence of naturally occurring RAVs in it is scarce.

View Article and Find Full Text PDF

Background: In study TMC647055HPC2001, a 3-direct-acting-antiviral (DAA) regimen combining NS3/4A protease inhibitor simeprevir (SMV), non-nucleoside NS5B inhibitor TMC647055/ritonavir (RTV) and NS5A inhibitor JNJ-56914845 resulted in high sustained virologic response 12 weeks after actual end of treatment (SVR12) in chronic hepatitis C virus (HCV) genotype 1-infected patients. SVR12 rates were generally lower in the 2-DAA regimen SMV + TMC647055/RTV with or without ribavirin. The objective of this study was to identify and characterise pre-existing and emerging resistance-associated variants (RAVs) in patients enrolled in study TMC647055HPC2001.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!