A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Carbon-nanotube-interfaced glass fiber scaffold for regeneration of transected sciatic nerve. | LitMetric

Carbon-nanotube-interfaced glass fiber scaffold for regeneration of transected sciatic nerve.

Acta Biomater

Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714, Republic of Korea; Institute of Tissue Regeneration Engineering, Dankook University, Cheonan 330-714, Republic of Korea; Department of Rehabilitation Medicine, College of Medicine, Dankook University, Cheonan 330-714, Republic of Korea. Electronic address:

Published: February 2015

Carbon nanotubes (CNTs), with their unique and unprecedented properties, have become very popular for the repair of tissues, particularly for those requiring electrical stimuli. Whilst most reports have demonstrated in vitro neural cell responses of the CNTs, few studies have been performed on the in vivo efficacy of CNT-interfaced biomaterials in the repair and regeneration of neural tissues. Thus, we report here for the first time the in vivo functions of CNT-interfaced nerve conduits in the regeneration of transected rat sciatic nerve. Aminated CNTs were chemically tethered onto the surface of aligned phosphate glass microfibers (PGFs) and CNT-interfaced PGFs (CNT-PGFs) were successfully placed into three-dimensional poly(L/D-lactic acid) (PLDLA) tubes. An in vitro study confirmed that neurites of dorsal root ganglion outgrew actively along the aligned CNT-PGFs and that the CNT interfacing significantly increased the maximal neurite length. Sixteen weeks after implantation of a CNT-PGF nerve conduit into the 10 mm gap of a transected rat sciatic nerve, the number of regenerating axons crossing the scaffold, the cross-sectional area of the re-innervated muscles and the electrophysiological findings were all significantly improved by the interfacing with CNTs. This first in vivo effect of using a CNT-interfaced scaffold in the regeneration process of a transected rat sciatic nerve strongly supports the potential use of CNT-interfaced PGFs at the interface between the nerve conduit and peripheral neural tissues.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.actbio.2014.11.026DOI Listing

Publication Analysis

Top Keywords

sciatic nerve
16
transected rat
12
rat sciatic
12
scaffold regeneration
8
regeneration transected
8
neural tissues
8
cnt-interfaced pgfs
8
nerve conduit
8
nerve
7
cnt-interfaced
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!