Recently, the scientific community became aware of the potential ability of nanoparticles to cause toxicity in living organisms. Therefore, many of the implications for aquatic ecosystems and its effects on living organisms are still to be evaluated and fully understood. In this study, the toxicity of nanodiamonds (NDs) was assessed in the freshwater bivalve (Corbicula fluminea) following exposure to different nominal concentrations of NDs (0.01, 0.1, 1, and 10 mg l(-1)) throughout 14 days. The NDs were characterized (gravimetry, pH, zeta potential, electron microscopy, and atomic force microscopy) confirming manufacturer information and showing NDs with a size of 4-6 nm. Oxidative stress enzymes activities (glutathione-S-transferase, catalase) and lipid peroxidation were determined. The results show a trend to increase in GST activities after seven days of exposure in bivalves exposed to NDs concentrations (>0.1 mg l(-1)), while for catalase a significant increase was found in bivalves exposed from 0.01 to 1.0 mg l(-1) following an exposure of 14 days. The histological analysis revealed alterations in digestive gland cells, such as vacuolization and thickening. The lipid peroxidation showed a trend to increase for the different tested NDs concentrations which is compatible with the observed cellular damage.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2014.10.055 | DOI Listing |
J Orthop Surg Res
January 2025
Research Institute of Orthopedics, The Affiliated Jiangnan Hospital of Zhejiang Chinese Medical University, Hangzhou, China.
Objective: Osteoporosis is a systemic disease with high morbidity and significant adverse effects. Increasing evidence supports the close relationship between oxidative stress and osteoporosis, suggesting that treatment with antioxidants may be a viable approach. This study evaluated the antioxidant properties of dichotomitin (DH) and its potential protective effects against osteoporosis.
View Article and Find Full Text PDFLipids Health Dis
January 2025
Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.
Background: Obesity can arise from various physiological disorders. This research examined the impacts of the bacteriocin, gassericin A, which is generated by certain gut bacteria, using an in vivo model of obesity.
Methods: Fifty Swiss NIH mice were randomly assigned to five different groups.
Geroscience
January 2025
Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
Aging remains the foremost risk factor for cardiovascular and cerebrovascular diseases, surpassing traditional factors in epidemiological significance. This review elucidates the cellular and molecular mechanisms underlying vascular aging, with an emphasis on sex differences that influence disease progression and clinical outcomes in older adults. We discuss the convergence of aging processes at the macro- and microvascular levels and their contributions to the pathogenesis of vascular diseases.
View Article and Find Full Text PDFMol Cell Biochem
January 2025
Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.
Chronic/heavy exposure with ethanol is associated with risk of type 2 diabetes, due to β-cells dysfunction. It has been reported that ethanol can induce oxidative stress directly or indirectly by involvement of mitochondria. We aimed to explore the protective effects of the crocin/gallic acid/L-alliin as natural antioxidants separately on ethanol-induced mitochondrial damage.
View Article and Find Full Text PDFProbiotics Antimicrob Proteins
January 2025
State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, China.
Microplastics (MPs) and Di-(2-ethylhexyl) phthalate (DEHP) as emerging contaminants, have caused increasing concern due to their co-exposure risks and toxicities to humans. Lactic acid bacteria have been demonstrated to play a significant role in the mitigation of organismal damage. Probiotic intervention is widely recognized as a safe and healthy therapeutic strategy for targeting the mitigation of organic damage.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!