The presence of Psidium guajava in polluted environments has been reported in recent studies, suggesting that this species has a high tolerance to the metal stress. The present study aims at a physiological characterization of P. guajava response to high nickel (Ni) concentrations in the root-zone. Three hydroponic experiments were carried out to characterize the effects of toxic Ni concentrations on morphological and physiological parameters of P. guajava, focusing on Ni-induced damages at the root-level and root ion fluxes. With up to 300μM NiSO4 in the root-zone, plant growth was similar to that in control plants, whereas at concentrations higher than 1000μM NiSO4 there was a progressive decline in plant growth and leaf gas exchange parameters; this occurred despite, at all considered concentrations, plants limited Ni(2+) translocation to the shoot, therefore avoiding shoot Ni(2+) toxicity symptoms. Maintenance of plant growth with 300μM Ni(2+) was associated with the ability to retain K(+) in the roots meanwhile 1000 and 3000μM NiSO4 led to substantial K(+) losses. In this study, root responses mirror all plant performances suggesting a direct link between root functionality and Ni(2+) tolerance mechanisms and plant survival. Considering that Ni was mainly accumulated in the root system, the potential use of P. guajava for Ni(2+) phytoextraction in metal-polluted soils is limited; nevertheless, the observed physiological changes indicate a good Ni(2+) tolerance up to 300μM NiSO4 suggesting a potential role for the phytostabilization of polluted soils.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jplph.2014.10.011 | DOI Listing |
Mol Plant Microbe Interact
January 2025
ETH Zurich Department of Environmental Systems Science, Plant Pathology Group, Institute of Integrative Biology, Zurich, Zürich, Switzerland.
Adaptation to new climates poses a significant challenge for plant pathogens during range expansion, highlighting the importance of understanding their response to climate to accurately forecast future disease outbreaks. The wheat pathogen is ubiquitous across most wheat production regions distributed across diverse climate zones. We explored the genetic architecture of thermal adaptation using a global collection of 411 strains that were phenotyped across a wide range of temperatures and then included in a genome-wide association study.
View Article and Find Full Text PDFPlanta
January 2025
Normandie Université, UNICAEN, INRAE, UMR 950 Ecophysiologie Végétale, Agronomie Et Nutritions N, C, S, Esplanade de La Paix CS14032, 14032, Caen Cedex 5, France.
The effects of intense heat during the reproductive phase of two Brassica species-B. napus and C. sativa-could be alleviated by a prior gradual increase exposure and/or PGPR inoculation.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China.
Microplastics (MPs) and per- and polyfluoroalkyl substances (PFASs) are ubiquitous contaminants in environments, yet their co-occurrence and interactions remain insufficiently understood. In this study, we confirmed the concurrent presence of MPs and PFASs and their distinct distribution patterns in a wastewater treatment plant (WWTP) through a comprehensive sampling and analysis effort. Significant correlations ( < 0.
View Article and Find Full Text PDFJ Sep Sci
January 2025
Zhejiang Provincial Key Laboratory of Evolutionary Ecology and Conservation, Taizhou University, Taizhou, China.
Evaluating the practical utility of endangered plant species is crucial for their conservation. Nevertheless, numerous endangered plants, including Sinocalycanthus chinensis, lack historical usage data, leading to a paucity of guidance in traditional pharmacological research. This gap impedes their development and potential utilization.
View Article and Find Full Text PDFJ Integr Plant Biol
January 2025
National Key Laboratory for Rice Biology and Breeding, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.
The rice E3 ubiquitin ligases OsCIE1 and IPI7 mediate the non-proteolytic polyubiquitination of the pattern-recognition receptor kinase OsCERK1 and the transcription factor IPA1, respectively, in response to Magnaporthe oryzae infection, thereby fine-tuning rice growth-immunity trade-offs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!