In drinking water, monochloramine may promote ammonia–oxidizing bacteria (AOB) growth because of concurrent ammonia presence. AOB use (i) ammonia monooxygenase for biological ammonia oxidation to hydroxylamine and (ii) hydroxylamine oxidoreductase for biological hydroxylamine oxidation to nitrite. In addition, monochloramine and hydroxylamine abiotically react, providing AOB a potential benefit by removing the disinfectant (monochloramine) and releasing growth substrate (ammonia). Alternatively and because biological hydroxylamine oxidation supplies the electrons (reductant) required for biological ammonia oxidation, the monochloramine/hydroxylamine abiotic reaction represents a possible inactivation mechanism by consuming hydroxylamine and inhibiting reductant generation. To investigate the abiotic monochloramine and hydroxylamine reaction's impact on AOB activity, the current study used batch experiments with Nitrosomonas europaea (AOB pure culture), ammonia, monochloramine, and hydroxylamine addition. To decipher whether hydroxylamine addition benefitted N. europaea activity by (i) removing monochloramine and releasing free ammonia or (ii) providing an additional effect (possibly the aforementioned reductant source), a previously developed cometabolism model was coupled with an abiotic monochloramine and hydroxylamine model for data interpretation. N. europaea maintained ammonia oxidizing activity when hydroxylamine was added before complete ammonia oxidation cessation. The impact could not be accounted for by monochloramine removal and free ammonia release alone and was concentration dependent for both monochloramine and hydroxylamine. In addition, a preferential negative impact occurred for ammonia versus hydroxylamine oxidation. These results suggest an additional benefit of exogenous hydroxylamine addition beyond monochloramine removal and free ammonia release, possibly providing reductant generation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2014.10.054 | DOI Listing |
Nat Commun
January 2025
College of Chemistry, Central China Normal University (CCNU), Wuhan, Hubei, PR China.
C-C and C-X bond forming reactions are essential tools in organic synthesis, constantly revolutionizing human life. Among the key methods for constructing new chemical bonds are nucleophilic addition reactions involving imines. However, the inherent challenges in synthesizing and storing imines have stimulated interest in designing stable precursors, which generates imines in situ during the reaction.
View Article and Find Full Text PDFEur J Med Res
December 2024
Infectious and Tropical Diseases Unit, Padua University Hospital, 35128, Padua, Italy.
Background: Molnupiravir (MOL) and nirmatrelvir/ritonavir (NIR) decreased mortality and hospital admissions in high-risk patients with mild to moderate COVID-19. Nevertheless, there is a lack of data about the pharmacoeconomic impact of these antivirals in the Omicron era. We conducted a pharmacoeconomic analysis assessing the medical costs of the use of these antivirals compared to those occurred in people who refused the treatment.
View Article and Find Full Text PDFMolecules
December 2024
Department of Chemistry and Biochemistry, Missouri State University, Springfield, MO 65897, USA.
Antimicrobial compounds play a critical role in combating microbial infections. However, the emergence of antibiotic and antifungal resistance and the scarcity of new antibiotic developments pose a significant threat and demand the discovery of new antimicrobials for both bacterial and fungal pathogens. Our previous work described the first generation () of organoantimony-based compounds that showed antimicrobial activity against several bacterial and fungal pathogens.
View Article and Find Full Text PDFSci Rep
December 2024
Research Department of Chemistry, Nehru Memorial College (Affiliated to Bharathidasan University), Puthanampatti, 621007, Tamil Nadu, India.
In recent years, several physicochemical methods have been proposed for decolourising textile dyes; however, few have been adopted by the textile industry because of factors such as high cost, low efficiency, and limited applicability to a wide range of dyes. The current study focuses on synthesising algae-mediated Cu and CuO nanocatalysts (Alg-Cu and Alg-CuO) using natural waste materials from green algae. The synthesised Alg-CuO nanocatalyst was characterised and confirmed using SEM, TEM, UV, FT-IR, XRD, XPS, GC-MS, and TGA.
View Article and Find Full Text PDFFood Funct
January 2025
Nutrition and Environmental Toxicology, University of California Davis, Davis, CA, USA.
Broccoli is recognized for its health benefits, attributed to the high concentrations of glucoraphanin (GR). GR must be hydrolyzed by myrosinase (Myr) to form the bioactive sulforaphane (SF). The primary challenge in delivering SF in the upper gastrointestinal (GI) tract- is improving hydrolysis of GR to SF.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!