Dengue virus can ignite both protective and pathogenic responses in human. The pathogenesis is related with modified functioning of our immune system during infection. Pattern recognition receptors like Toll like receptor 3 is vital for the induction of innate immunity in case of Dengue infection. Toll like receptor 3 induces TRIF mediated activation of Type 1 interferons and Fc receptor mediated induction of cytokines. Interferons have been related with clearance of Dengue virus but it has adopted modified regulatory mechanisms to counter this effect. SOCS protein is also induced due to the interferon and cytokine mediated signalling which can subsequently play its part in the regulation of interferon and cytokine production. Our hypothesis in this study relates the pathogenesis of Dengue virus with the SOCS mediated inhibition of our innate immunity. We used the qualitative formalism of René Thomas to model the biological regulatory network of Toll like receptor 3 mediated signalling pathway in an association with pathogenesis of dengue. Logical parameters for the qualitative modelling were inferred using a model checking approach implemented in SMBioNet. A linear hybrid model, parametric linear hybrid automaton, was constructed to incorporate the activation and inhibition time delays in the qualitative model. The qualitative model captured all the possible expression dynamics of the proteins in the form of paths, some of which were observed as abstract cycles (representing homoeostasis) and diverging paths towards stable states. The analysis of the qualitative model highlighted the importance of SOCS protein in elevating propagation of dengue virus through inhibition of type 1 interferons. Detailed qualitative analysis of regulatory network endorses our hypothesis that elevated levels of cytokine subsequently induce SOCS expression which in turn results into the continuous down-regulation of Toll like receptor 3 and interferon. This may result into the Dengue pathogenesis during the stage of immunosuppression. Further analysis with HyTech (HYbrid TECHnology) tool provided us with the real-time constraints (delay constraints) of the proteins involved in the cyclic paths of the regulatory network backing the evidence provided by the qualitative analysis. The HyTech results also suggest that the role of SOCS is vital in homoeostasis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiolchem.2014.10.003DOI Listing

Publication Analysis

Top Keywords

dengue virus
20
regulatory network
16
toll receptor
16
qualitative model
12
analysis regulatory
8
dengue
8
clearance dengue
8
innate immunity
8
type interferons
8
receptor mediated
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!