Inhibition data on rat monoamine oxidase B isoform of a large number of 7-metahalobenzyloxy-2H-chromen-2-one derivatives (67 compounds) carrying at position 4 a variety of substituents differing in steric, electrostatic, lipophilic and H-bonding properties, were modeled by Gaussian field-based 3D-QSAR and docking simulations carried out on rat MAO-B homology model. The computational study combining two different approaches provided easily interpretable binding modes, highlighting the dominant role of the steric effects at position 4, and guided the design of new, potent and selective MAO-B inhibitors. The 4-hydroxyethyl-, 4-chloroethyl-, 4-carboxamidoethyl-coumarin derivatives 70, 71, and 76, respectively, were endowed with high MAO-B inhibitory potency (pIC50 = 8.13, 7.89 and 7.82, respectively) and good selectivity over MAO-A (pIC50 = 5.33, 3% inhibition at 10 μM, and pIC50 = 5.37, respectively). New compounds with moderate to low MAO-B inhibitory activity were also designed and prepared to challenge the predictive power of our docking-based 3D-QSAR model. The good match between predicted and experimental pIC50 values for all the newly designed compounds confirmed the robustness of our model (r(2) = 0.856, RMSE = 0.421) and its transparent rationale in unveiling the main molecular determinants for high potency towards MAO-B.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmech.2014.10.029DOI Listing

Publication Analysis

Top Keywords

potent selective
8
selective mao-b
8
mao-b inhibitors
8
mao-b inhibitory
8
mao-b
6
silico design
4
design novel
4
novel 2h-chromen-2-one
4
2h-chromen-2-one derivatives
4
derivatives potent
4

Similar Publications

Burn-related neuropathic pain (BRNP) can arise following burn-induced nerve damage, affects approximately 6% of burned human patients and can result in chronic pain. Although widely studied in humans, data on BRNP or its treatment in animals is lacking. A 4-year-old domestic shorthair cat was presented with an infected, non-healing wound suspected to be a caustic burn.

View Article and Find Full Text PDF

: Extracellular vesicles (EVs) can carry pathological cargo, contributing to disease progression. The enzyme neutral sphingomyelinase 2 (nSMase2) plays a critical role in EV biogenesis, making it a promising therapeutic target. Our lab previously identified a potent and selective inhibitor of nSMase2, named DPTIP (IC = 30 nM).

View Article and Find Full Text PDF

Medicinal plants are sources of crude traditional herbal medicines that are utilized to reduce the risk of, treat, or manage diseases in most indigenous communities. This is due to their potent antioxidant and anti-inflammatory effects. It is estimated that about 80% of the population in developing countries rely on herbal traditional medicines for healthcare.

View Article and Find Full Text PDF

The synthesis of ()-1-(1,3-diphenylallyl)-1-1,2,4-triazoles and related compounds as anti-mitotic agents with activity in breast cancer was investigated. These compounds were designed as hybrids of the microtubule-targeting chalcones, indanones, and the aromatase inhibitor letrozole. : A panel of 29 compounds was synthesized and examined by a preliminary screening in estrogen receptor (ER) and progesterone receptor (PR)-positive MCF-7 breast cancer cells together with cell cycle analysis and tubulin polymerization inhibition.

View Article and Find Full Text PDF

Anti-Biofilm Agents to Overcome Antibiotic Resistance.

Pharmaceuticals (Basel)

January 2025

AGIR, UR 4294, Faculté de Pharmacie, Université de Picardie Jules Verne, 1 Rue des Louvels, 80000 Amiens, France.

is one of world's most threatening bacteria. In addition to the emerging prevalence of multi-drug resistant (MDR) strains, the bacterium also possesses a wide variety of virulence traits that worsen the course of the infections. Particularly, its ability to form biofilms that protect colonies from antimicrobial agents is a major cause of chronic and hard-to-treat infections in immune-compromised patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!