Docosahexaenoic acid counteracts attenuation of CD95-induced cell death by inorganic mercury.

Toxicol Appl Pharmacol

Department of Immunology and Microbiology, Wayne State University, Detroit MI, USA. Electronic address:

Published: January 2015

AI Article Synopsis

  • Mercury exposure in the U.S. primarily comes from seafood consumption, and studies indicate that low-level exposure during pregnancy can negatively affect children's cognitive development.
  • Docosahexaenoic acid (DHA), found in fish, may help mitigate these negative effects of mercury on the nervous system and has potential benefits for immune function.
  • Research shows that DHA can restore the proper functioning of the CD95 signaling pathway in T cells, potentially reducing the risk of autoimmune diseases linked to low-level mercury exposure.

Article Abstract

In the United States the principal environmental exposure to mercury is through dietary consumption of sea food. Although the mechanism by which low levels of mercury affect the nervous system is not well established, epidemiological studies suggest that low level exposure of pregnant women to dietary mercury can adversely impact cognitive development in their children, but that Docosahexaenoic acid (DHA), the most prominent n-polyunsaturated fatty acid (n-PUFA) present in fish may counteract negative effects of mercury on the nervous system. Aside from effects on the nervous system, epidemiological and animal studies have also suggested that low level mercury exposure may be a risk factor for autoimmune disease. However unlike the nervous system where a mechanism linking mercury to impaired cognitive development remains elusive, we have previously suggested a potential mechanism linking low level mercury exposures to immune system dysfunction and autoimmunity. In the immune system it is well established that disruption of CD95 mediated apoptosis leads to autoimmune disease. We have previously shown in vitro as well as in vivo that in lymphocytes burdened with low levels of mercury, CD95 mediated cell death is impaired. In this report we now show that DHA counteracts the negative effect of mercury on CD95 signaling in T lymphocytes. T cells which have been pre-exposed to DHA are able to cleave pro-caspase 3 and efficiently signal programmed cell death through the CD95 signaling pathway, whether or not they are burdened with low levels of mercury. Thus DHA may lower the risk of autoimmune disease after low level mercury exposures.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4278955PMC
http://dx.doi.org/10.1016/j.taap.2014.11.005DOI Listing

Publication Analysis

Top Keywords

nervous system
16
low level
16
cell death
12
mercury
12
low levels
12
levels mercury
12
level mercury
12
autoimmune disease
12
docosahexaenoic acid
8
system well
8

Similar Publications

"The Brain is…": A Survey of the Brain's Many Definitions.

Neuroinformatics

January 2025

Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, 760 Westwood Plaza, Los Angeles, CA, 90024, USA.

A reader of the peer-reviewed neuroscience literature will often encounter expressions like the following: 'the brain is a dynamic system', 'the brain is a complex network', or 'the brain is a highly metabolic organ'. These expressions attempt to define the essential functions and properties of the mammalian or human brain in a simple phrase or sentence, sometimes using metaphors or analogies. We sought to survey the most common phrases of the form 'the brain is…' in the biomedical literature to provide insights into current conceptualizations of the brain.

View Article and Find Full Text PDF

Long-term epidemiological trends in (primary) pediatric central nervous system tumors: a 25-year cohort analysis in Western Mexico.

Childs Nerv Syst

January 2025

Ph.D. Human Genetics Program, Molecular Biology and Genomics Department, Human Genetics Institute "Dr. Enrique Corona-Rivera", University Center of Health Sciences, University of Guadalajara, Guadalajara, Mexico.

Background: Central nervous system tumors (CNSTs) represent a significant oncological challenge in pediatric populations, particularly in developing regions where access to diagnostic and therapeutic resources is limited.

Methods: This research investigates the epidemiology, histological classifications, and survival outcomes of CNST in a cohort of pediatric patients aged 0 to 19 years within a 25-year retrospective study at the Civil Hospital of Guadalajara, Mexico, from 1999 to 2024.

Results: Data was analyzed from 273 patients who met inclusion criteria, revealing a higher incidence in males (51.

View Article and Find Full Text PDF

A new vision of the role of the cerebellum in pain processing.

J Neural Transm (Vienna)

January 2025

Postgraduate Program in Physical Therapy (PPGFT), Department of Physical Therapy (DFisio), University of São Carlos (UFSCar), Washington Luis Road, Km 235, São Carlos, São Paulo, 13565-905, Brazil.

The cerebellum is a structure in the suprasegmental nervous system classically known for its involvement in motor functions such as motor planning, coordination, and motor learning. However, with scientific advances, other functions of the cerebellum, such as cognitive, emotional, and autonomic processing, have been discovered. Currently, there is a body of evidence demonstrating the involvement of the cerebellum in nociception and pain processing.

View Article and Find Full Text PDF

Background: Reaching parenchymal segments of the lateral lenticulostriate artery (LSA) perforators, which represent the medial resection limit in insular gliomas (IG), remains a challenge. The currently described methods are indirect and sometimes, imprecise.

Methods: We report an antegrade direct skeletonization technique to identify these tiny arteries at the medial end of IGs with an illustrative case of grade 2 astrocytoma.

View Article and Find Full Text PDF

Children and adolescents with neurodevelopmental disorders such as autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD) may be more susceptible to early life stress compared to their neurotypical peers. This increased susceptibility may be linked to regionally-specific changes in the striatum and amygdala, brain regions sensitive to stress and critical for shaping maladaptive behavioural responses. This study examined early life stress and its impact on striatal and amygdala development in 62 children and adolescents (35 males, mean age = 10.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!