Brain-derived neurotrophic factor (BDNF) plays critical roles in the development and maintenance of the central (CNS) and peripheral nervous systems (PNS). BDNF exerts its biological effects via tropomyosin-related kinase B (TrkB) and the p75 neurotrophin receptor (p75NTR). We have recently identified that BDNF promotes CNS myelination via oligodendroglial TrkB receptors. In order to selectively target TrkB to promote CNS myelination, we have used a putative TrkB agonist, a small multicyclic peptide (tricyclic dimeric peptide 6, TDP6) previously described by us that structurally mimics a region of BDNF that binds TrkB. We confirmed that TDP6 acts as a TrkB agonist as it provoked autophosphorylation of TrkB and its downstream signalling effector extracellular related-kinase 1 and 2 (Erk1/2) in primary oligodendrocytes. Using an in vitro myelination assay, we show that TDP6 significantly promotes myelination by oligodendrocytes in vitro, as evidenced by enhanced myelin protein expression and an increased number of myelinated axonal segments. In contrast, a second, structurally distinct BDNF mimetic (cyclo-dPAKKR) that targets p75NTR had no effect upon oligodendrocyte myelination in vitro, despite the fact that cyclo-dPAKKR is a very effective promoter of peripheral (Schwann cell) myelination. The selectivity of TDP6 was further verified by using TrkB-deficient oligodendrocytes, in which TDP6 failed to promote myelination, indicating that the pro-myelinating effect of TDP6 is oligodendroglial TrkB-dependent. Together, our results demonstrate that TDP6 is a novel BDNF mimetic that promotes oligodendrocyte myelination in vitro via targeting TrkB.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mcn.2014.10.002 | DOI Listing |
J Neurol Sci
December 2024
Toronto Eye Specialists and Surgeons, Toronto, Ontario, Canada; Department of Ophthalmology & Vision Science, University of Toronto, Toronto, Ontario, Canada; Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada; Division of Neurology, Department of Medicine, University of Toronto, Canada. Electronic address:
Background: Few predictors of visual outcome after myelin oligodendrocyte glycoprotein (MOG) auto-antibody disease optic neuritis (ON) have been reliably elucidated. We evaluate whether between-study differences in ON neuroimaging regional enhancement features may underlie heterogeneity in reported visual prognosis.
Methods: PROSPERO (CRD42024580123).
Mult Scler Relat Disord
December 2024
Department of Pediatric Cardiology, Amrita Institute of Medical Sciences, Amrita Vishwa Vidhyapeetham, Ponekkara PO, Kochi 682041, Kerala, India.
Background And Objectives: Myelin oligodendrocyte glycoprotein (MOG) associated disease (MOGAD) is an antibody-mediated inflammatory demyelinating disorder of the CNS with varied presentations like optic neuritis (ON), transverse myelitis, and cortical encephalitis. This study aims to highlight the significance of low MOG IgG antibody positivity and its diagnostic implications in a real-world cohort.
Methods: In this retrospective observational study, serum and CSF from suspected MOGAD cases were tested at a tertiary healthcare centre's Neuroimmunology Laboratory.
Front Immunol
December 2024
Department of Neurology, University Hospital Ulm, Ulm, Germany.
Introduction: Very rarely, adult NMDAR antibody-associated encephalitis (NMDAR-E) leads to persistent cerebellar atrophy and ataxia. Transient cerebellar ataxia is common in pediatric NMDAR-E. Immune-mediated cerebellar ataxia may be associated with myelin oligodendrocyte glycoprotein (MOG), aquaporin-4 (AQP-4), kelch-like family member 11 (KLHL11), and glutamate kainate receptor subunit 2 (GluK2) antibodies, all of which may co-occur in NMDAR-E.
View Article and Find Full Text PDFJ Ethnopharmacol
December 2024
School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.
Ethnopharmacological Relevance: The Bu Shen Yi Sui capsule (BSYS), a modified version of the classical Chinese medicine formula Liu Wei Di Huang pill, has demonstrated therapeutic efficacy in the treatment of multiple sclerosis (MS). Nevertheless, the precise mechanism through which BSYS facilitates remyelination remains to be elucidated.
Aim Of The Study: This research investigates the role and potential mechanisms of BSYS-modified exosomes (exos) derived from bone marrow mesenchymal stem cells (BMSCs) in promoting remyelination in a cuprizone (CPZ)-induced demyelination model in mice.
J Neurol Neurosurg Psychiatry
December 2024
Department of Neurology and Institute of Neuroimmunology and MS (INIMS), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
Background: Recurrent attacks in neuromyelitis optica spectrum disorders (NMOSDs) or myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) can lead to severe disability. We aimed to analyse the real-world use of immunotherapies in patients with NMOSD and MOGAD, focusing on changes in treatment strategies, effects on attack rates (ARR) and risk factors for attacks.
Methods: This longitudinal registry-based cohort study included 493 patients (320 with aquaporin-4 immunoglobulin G (AQP4-IgG) seropositive NMOSD (65%), 44 with AQP4-IgG seronegative NMOSD (9%) and 129 MOGAD (26%)) with 1247 treatments from 19 German and one Austrian centre from the registry of the neuromyelitis optica study group (NEMOS).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!