Quinoxalines belong to the N-containing heterocyclic compounds that stand out as having promising biological activity due to their privileged scaffold. In this work, we report the synthesis, antileishmanial, and antitrypanosomal properties of 46 new 2,3-disubstituted quinoxaline and 40 previously reported derivatives. Among all of the compounds screened for in vitro activity against epimastigotes and trypomastigotes of Trypanosoma cruzi and promastigotes of Leishmania amazonensis as well as mammalian toxicity on LLCMK2 cells and J774 macrophages, analogues from series 5, 6, 7, 9, 12, and 13 displayed high activity at micromolar IC50 and EC50 concentrations. Sixteen quinoxaline derivatives were selected and evaluated on T. cruzi and/or L. amazonensis amastigotes. The most active compounds were 6a-b and 7d-e, on all evolutive forms of L. amazonensis and T. cruzi evaluated with IC50 values 0.1-0.8 μM on promastigotes and epimastigotes 1.4-8.6 on amastigotes. Compounds 5k, 12b and 13a were the most selective (SI = 19.5-38.4) on amastigotes of T. cruzi. In general their activity was directly related to the methylsulfoxyl, methylsulfonyl, and amine groups as well as the presence of chorine or bromine in the molecules. The current results indicate that these quinoxaline derivatives are novel and promising agents for further development towards a treatment for Chagas' disease and leishmaniasis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejmech.2014.11.018 | DOI Listing |
Cell Death Dis
December 2024
Gastrointestinal Research Group, Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
Intestinal cell death is a defining feature of Crohn's disease (CD), a major form of inflammatory bowel disease. The focus on this aspect of enteric inflammation has mainly been on epithelial cells, while other cell types such as stromal and myeloid cells have received less attention. Hypothesising that decreased macrophage viability in an oxidative environment could be a contributing factor to the pathophysiology of CD, we found that monocyte-derived macrophages from individuals with active CD (but not those in clinical disease remission) have increased sensitivity to cell death induced by HO.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, 85-326 Bydgoszcz, Poland.
Billions of patients struggle with dental diseases every year. These mainly comprise caries and related diseases. This results in an extremely high demand for innovative, polymer composite filling materials that meet a number of dental requirements.
View Article and Find Full Text PDFMicrobiologyopen
December 2024
Department of Life Sciences (DLS), Aberystwyth University, Aberystwyth, UK.
Antimicrobial resistance remains a global issue, hindering the control of bacterial infections. This study examined the antimicrobial properties of 2,3-N,N-diphenyl quinoxaline derivatives against Gram-positive, Gram-negative, and Mycobacterium species. Two quinoxaline derivatives (compounds 25 and 31) exhibited significant activity against most strains of Staphylococcus aureus, Enterococcus faecium, and Enterococcus faecalis tested, with MIC values ranging from 0.
View Article and Find Full Text PDFBioorg Chem
December 2024
Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Cairo 11571, Egypt. Electronic address:
Hepatocellular carcinoma (HCC) ranks as the third most prevalent reason for cancer-related death on a global scale. Tyrosine kinase inhibitors (TKIs) continue to be the primary treatment option for advanced hepatocellular carcinoma. A series of fluoro-11H-indeno[1,2-b]quinoxaline derivatives as an HCC drug targeting the VEGFR2/AKT axis was designed and synthesized.
View Article and Find Full Text PDFChemSusChem
November 2024
Tunghai University, Chemistry, NO. 1727, Sec.4, Taiwan Boulevard, Xitun District, Taichung 40704, Taiwan, 407, Taichung, TAIWAN.
Three indeno[1,2-b]quinoxaline-based passivators (CQs) with different functionalities including ketone, malononitrile, nitrile, and amine were prepared and used as passivators in perovskite solar cells (PSCs). All of them exhibit good thermal stability, low cost, and ease of preparation. The variation in molecular geometries, in planar and spiro-shaped designs with appropriate functional groups, highlights a comparison between their passivation properities.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!