Early prediction of Biochemical Methane Potential through statistical and kinetic modelling of initial gas production.

Bioresour Technol

Department of Biotechnology, Lund University, Getingevägen 60, 221 00 Lund, Sweden; Bioprocess Control AB, Scheelevägen 22, 223 63 Lund, Sweden. Electronic address:

Published: January 2015

A major drawback of Biochemical Methane Potential (BMP) tests is their long test duration, which could be reduced substantially if the final gas production could be predicted at an earlier stage. For this purpose, this study evaluates 61 different algorithms for their capability to predict the final BMP and required degradation time based on data from 138 BMP tests of various substrate types. By combining the best algorithms it was possible to predict the BMP with a relative root mean squared error (rRMSE) of less than 10% just 6days after initiation of the experiment. The results from this study indicate that there is a possibility to shorten the test length substantially by combining laboratory tests and intelligent prediction algorithms. Shorter test duration may widen the possible applications for BMP tests in full-scale biogas plants, allowing for a better selection and proper pricing of biomass.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2014.11.033DOI Listing

Publication Analysis

Top Keywords

bmp tests
12
biochemical methane
8
methane potential
8
gas production
8
test duration
8
bmp
5
early prediction
4
prediction biochemical
4
potential statistical
4
statistical kinetic
4

Similar Publications

Introduction/objectives: Most children with juvenile idiopathic arthritis (JIA) are treated with medications that require safety monitoring labs. Recommended testing includes a creatinine level. However, 87.

View Article and Find Full Text PDF

Purpose Of The Study: The preclinical study aimed to compare the healing of segmental bone defects treated with biodegradable hyaluronic acid and tricalcium phosphate-based hydrogel with the established autologous spongioplasty. Another aim was to evaluate the hydrogel as a scaffold for osteoinductive growth factor of bone morphogenetic protein-2 (BMP-2) and stem cells.

Material And Methods: The study was conducted in an in vivo animal model.

View Article and Find Full Text PDF

The use of 3D-printed gene-activated bone grafts represents a highly promising approach in the fields of dentistry and orthopedics. Bioresorbable poly-lactic-co-glycolic acid (PLGA) scaffolds, infused with adenoviral constructs that carry osteoinductive factor genes, may provide an effective alternative to existing bone grafts for the reconstruction of extensive bone defects. This study aims to develop and investigate the properties of 3D scaffolds composed of PLGA and adenoviral constructs carrying the BMP2 gene (Ad-BMP2), both in vitro and in vivo.

View Article and Find Full Text PDF

Contemporary therapies following heart failure center on regenerative approaches to account for the loss of cardiomyocytes and limited regenerative capacity of the adult heart. While the delivery of cardiac progenitor cells has been shown to improve cardiac function and repair following injury, recent evidence has suggested that their paracrine effects (or secretome) provides a significant contribution towards modulating regeneration, rather than the progenitor cells intrinsically. The direct delivery of secretory biomolecules, however, remains a challenge due to their lack of stability and tissue retention, limiting their prolonged therapeutic efficacy.

View Article and Find Full Text PDF

Effects of inoculum temperature and characteristics on cellulose and sewage sludge biodegradability: A comparative study of three inocula.

Chemosphere

January 2025

BioEngine Research team on green process Engineering and Biorefineries, Chemical Engineering Department, Université Laval, Pavillon Adrien-Pouliot 1065, av. de la Médecine Québec, Québec, Canada; CentrEau, Centre de Recherche sur l'eau, Université Laval, 1065 Avenue de la Médecine, Québec, QC, G1V 0A6, Canada. Electronic address:

The role of inoculum in initiating anaerobic digestion (AD), and accelerating the start-up of anaerobic digesters has been well-documented. However, the effect of aligning the origin temperature of the inoculum with the operational temperature of the new digester remains underexplored. This study investigates how the origin temperature and characteristics of the inoculum affect the kinetics and biodegradability of sewage sludge (SS) and microcrystalline cellulose (MCC) under mesophilic and thermophilic conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!