Phthalate esters are widely used plasticizers that are present in many daily used products. Although some of their reproductive effects have been reported, pubertal development effects from prenatal exposure to phthalates awaits further investigations. A population based birth cohort was established (N=437 at baseline) with maternal exposure to phthalates assessed in urine collected at the third trimester of pregnancy in 2001 and 2002. Their 133 children with prenatal phthalates exposure were followed up for the outcomes of pubertal development by sequential physical examinations at eight and 11 years old in 2009 and 2012. Urinary concentrations of major phthalate metabolites (i.e., mono-2-ethylhexyl phthalate [MEHP], mono-(2-ethyl-5-hydroxyhexyl) phthalate [MEHHP], mono-(2-ethyl-5-oxohexyl) phthalate [MEOHP], mono-butyl phthalate [MBP], mono-benzyl phthalate [MBzP], monomethyl phthalate [MMP], and mono-ethyl phthalate [MEP]) were determined using liquid chromatography linked to tandem mass spectrometry. The reproductive development measurements included bone age (for both genders), testicle size (for boys), uterus size, and ovarian volume (for girls). We reported results of 133 children with complete data by applying generalized estimating equations for the repeated continuous outcomes. After controlling for Tanner stage, we detected a significant association between reduced uterus size and increasing phthalate exposure in the 2(nd) tertile relative to the 1st tertile of creatinine-corrected MEHP (B=-0.40; 95% C.I.: -0.73, -0.07, relative to the 1st tertile) and total DEHP (B=-0.39, 95% C.I.:-0.66, -0.01 for the 2nd tertile and B=0.34, 95% C.I.: -0.67, -0.01 for the 3rd tertile, relative to the 1st tertile) with a linear trend among girls. MBzP was also found negatively associated with bone age/chronological age ratio (B=-0.07, 95% CI: -0.13, -0.01 for the 3rd tertile, relative to the 1st tertile) with a linear trend for girls. We found no evidence of an association between phthalate exposure and ovarian volume or testicle size. This analysis suggests phthalate exposure may affect specific pubertal development characteristics in human beings. Further studies with larger sample sizes and longer follow-up period are warranted.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envres.2014.10.026 | DOI Listing |
Oral contraceptives (OCs) are approved for use after onset of menarche, which is well before brain maturation is complete. OC use may induce biochemical changes in the brain, especially during the neurobiologically dynamic adolescent/young adult years. MicroRNA cargo in L1CAM-associated extracellular vesicles was measured from serum samples collected from young women using the miRCURY LNA miRNA Focus PCR Panel (Qiagen) and validated using quantitative PCR.
View Article and Find Full Text PDFF1000Res
January 2025
Department of Community Medicine, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education,, Karnataka, Manipal, 576104, India.
Background: Better affordability of data plans and an increase in "budget" smartphones have resulted in an exponential rise in internet and smartphone users. The ease of access to sexually explicit material (SEM) coupled with adolescents' impulsivity makes them prone to excessive SEM exposure and may affect the development of sexuality via the perceived realism of such content. This study was done to study the influence between problematic smartphone usage (PSU) and sexuality development among late adolescent boys.
View Article and Find Full Text PDFJ Adolesc Health
January 2025
Social and Behavioral Sciences, School of Public Health, West Virginia University, Morgantown, West Virginia.
Purpose: Recent research suggests that caffeine use may promote a range of adjustment difficulties among adolescents, particularly during the middle school years. The effects of caffeine are particularly concerning given the increased use of high-dosage caffeine products, such as energy drinks, among youth. We investigated the influence of caffeine use on trajectories of conduct problems among early adolescents.
View Article and Find Full Text PDFAnimals (Basel)
January 2025
School of Agriculture and Biology, Liaocheng University, Liaocheng 252059, China.
and miRNA regulate mammalian pubertal initiation and Gonadotropin-releasing hormone (GnRH) production. However, it remains unclear which signaling pathways regulates to modulate GnRH production. In this study, the mRNA expression levels of and in the pubertal and juvenile goat hypothalamus and pituitary gland were detected, and expression in the pubertal hypothalamus decreased significantly compared with that in juvenile tissues.
View Article and Find Full Text PDFChildren (Basel)
January 2025
Department of Pediatrics, Division of Pediatric Endocrinology, Demiroğlu Bilim University, 34394 Istanbul, Türkiye.
This review examines the inconsistent effects of endocrine-disrupting chemicals (EDCs) and pollutants on pubertal timing, emphasizing the methodological challenges contributing to variability in findings. Data from nine key studies reveal that chemicals such as BPA, phthalates, and PFAS impact pubertal onset differently based on exposure timing, dosage, and sex. For instance, BPA is linked to earlier puberty in girls but delayed onset in boys, while other EDCs show mixed effects across populations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!