SAINT-liposome-polycation particles, a new carrier for improved delivery of siRNAs to inflamed endothelial cells.

Eur J Pharm Biopharm

University of Groningen, University Medical Center Groningen, Dept. of Pathology & Medical Biology, Medical Biology Section, Groningen, The Netherlands. Electronic address:

Published: January 2015

Interference with acute and chronic inflammatory processes by means of delivery of siRNAs into microvascular endothelial cells at a site of inflammation demands specific, non-toxic and effective siRNA delivery system. In the current work we describe the design and characterization of siRNA carriers based on cationic pyridinium-derived lipid 1-methyl-4-(cis-9-dioleyl)methyl-pyridinium-chloride) (SAINT-C18) and the transfection enhancer protamine, complexed with siRNA/carrier DNA or siRNA only. These carriers, called SAINT-liposome-polycation-DNA (S-LPD) and SAINT-liposome-polycation (S-LP), have a high efficiency of siRNA encapsulation, low cellular toxicity, and superior efficacy of gene downregulation in endothelial cells in vitro as compared to DOTAP-LPD. Incorporation of 10 mol% PEG and anti-E-selectin antibody in these formulations resulted in selective siRNA delivery into activated endothelial cells. Furthermore, we showed that the physicochemical characteristics of S-LPD and S-LP, including size-stability and maintenance of the siRNA integrity in the presence of serum at 37 °C, comply with requirements for in vivo application.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejpb.2014.11.015DOI Listing

Publication Analysis

Top Keywords

endothelial cells
16
delivery sirnas
8
sirna delivery
8
sirna carriers
8
sirna
6
saint-liposome-polycation particles
4
particles carrier
4
carrier improved
4
delivery
4
improved delivery
4

Similar Publications

Endothelial dysfunction, characterized by a decline in endothelial physiological functions, is a significant aspect of cardiovascular aging, contributing notably to arterial stiffness, atherosclerosis, and hypertension. Transient receptor potential channel V4 (TRPV4), a key member of Ca-permeable channels, plays a crucial role in maintaining vascular functions. However, the role and mechanisms of TRPV4 in aging-related endothelial dysfunction remain incompletely understood.

View Article and Find Full Text PDF

Neovascular age-related macular degeneration (nAMD), characterized by choroidal neovascularization (CNV), is one of the leading causes of severe visual impairment and irreversible vision loss around the world. Subretinal fibrosis (SRF) contributes to the incomplete response to anti-vascular endothelial growth factor (VEGF) treatment and is one of the main reasons for long-term poor visual outcomes in nAMD. Reducing SRF is urgently needed in the anti-VEGF era.

View Article and Find Full Text PDF

PIM1 instigates endothelial-to-mesenchymal transition to aggravate atherosclerosis.

Theranostics

January 2025

Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Shandong, China.

Endothelial-to-mesenchymal transition (EndMT) is a cellular reprogramming mechanism by which endothelial cells acquire a mesenchymal phenotype. Endothelial cell dysfunction is the initiating factor of atherosclerosis (AS). Increasing evidence suggests that EndMT contributes to the occurrence and progression of atherosclerotic lesions and plaque instability.

View Article and Find Full Text PDF

Postinterventional restenosis is a major challenge in the treatment of peripheral vascular disease. Current anti-restenosis drugs inhibit neointima hyperplasia but simultaneously impair endothelial repair due to indiscrminative cytotoxity. Stem cell-derived exosomes provide multifaceted therapeutic effects by delivering functional miRNAs to endothelial cells, macrophages, and vascular smooth muscle cells (VSMCs).

View Article and Find Full Text PDF

Apolipoprotein E dysfunction in Alzheimer's disease: a study on miRNA regulation, glial markers, and amyloid pathology.

Front Aging Neurosci

December 2024

Department of Ophthalmology and Visual Sciences, Faculty of Medicine, Eye Care Centre, The University of British Columbia, Vancouver, BC, Canada.

Introduction: Apolipoprotein E (ApoE) plays a crucial role in lipid homeostasis, predominantly expressed in astrocytes and to a lesser extent in microglia within the central nervous system (CNS). While the allele is the strongest genetic risk factor for late-onset Alzheimer's disease (AD), its precise role in AD pathogenesis remains elusive. -knockout (-ko) mice, mice expressing human , and human carriers exhibit similar deficits in lipid metabolism, cognitive and behavioral functions, and neurodegeneration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!