Until now extrusion is not applied for pharmaceutical encapsulation processes, whereas extrusion is widely used for encapsulation of flavours within food applications. Based on previous mixing studies, a hot melt counter-rotating extrusion process for encapsulation of liquid active pharmaceutical ingredients (APIs) was investigated. The mixing ratio of maltodextrin to sucrose as matrix material was adapted in first extrusion trials. Then the number of die holes was investigated to decrease expansion and agglutination of extrudates to a minimum. At a screw speed of 180 min(-1) the product temperature was decreased below 142 °C, resulting in extrudates of cylindrical shape with a crystalline content of 9-16%. Volatile orange terpenes and the nonvolatile α-tocopherol were chosen as model APIs. Design of experiments were performed to investigate the influences of barrel temperature, powder feed rate, and API content on the API retentions. A maximum of 9.2% α-tocopherol was encapsulated, while the orange terpene encapsulation rate decreased to 6.0% due to evaporation after leaving the die. During 12 weeks of storage re-crystallization of sucrose occurred; however, the encapsulated orange terpene amount remained unchanged.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejpb.2014.11.017 | DOI Listing |
Int J Biol Macromol
December 2024
Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Graduate Program in Food Science and Technology, Department of Agroindustrial Science and Technology, Federal University of Pelotas, 96010-900 Pelotas, Brazil.
This study investigated the formation of fibers and capsules using rice starch as a wall material to encapsulate orange peel essential oil (OPEO) by electrospinning for antimicrobial applications. Rice starch at a concentration of 20 % (w/v) and varying OPEO concentrations (30 %, 40 %, and 50 %, w/w) were used to produce materials. Free OPEO was analyzed for its chemical profile and antimicrobial activity.
View Article and Find Full Text PDFFoods
November 2024
Centro de Investigación en Alimentación y Desarrollo, Av. Río Conchos S/N Parque Industrial, Cuauhtémoc 31570, Chihuahua, Mexico.
Bitter orange is a citrus fruit rich in bioactive compounds, but its waste is currently underutilized. One potential solution is to encapsulate these bioactive compounds. This research aims to synthesize gelatin nanoparticles loaded with an ethanolic extract of bitter orange peel and to evaluate their in vitro antioxidant and antibacterial activities.
View Article and Find Full Text PDFFood Chem X
October 2024
Technical University of Cluj Napoca, North University Center of Baia Mare, Victoriei Str. 76, Baia Mare, Romania.
Beads made of sodium alginate, whey protein concentrate, and red grape seed extract powder were exposed to white light and its red-orange, yellow-green-cyan, and cyan-blue-violet bands. The chemical analysis showed that encapsulation in the alginate-whey protein matrix protected polyphenols, flavonoids and cyanidin-3--glucoside when exposed to red-orange light. The reflectance spectra acquired from grape seed extract powder and grape seed extract beads were deconvoluted and anthocyanins-based moieties which contribute to the expression of bathochromic or hypsochromic effects were identified.
View Article and Find Full Text PDFJ Microencapsul
December 2024
Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India.
Phytochemicals as dietary components are being extensively explored in order to prevent and treat a wide range of diseases. Apigenin is among the most studied flavonoids found in significant amount in fruits (oranges), vegetables (celery, parsley, onions), plant-based beverages (beer, tea, wine) and herbs (thyme, chamomile, basil, oregano) that has recently gained interest due to its promising pharmacological effects. However, the poor solubility and extended first pass metabolism of apigenin limits its clinical use.
View Article and Find Full Text PDFFood Res Int
January 2025
Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan, Shanghai 200240, China. Electronic address:
The application of red Monascus pigments (RMPs) in food storage as well as food processing usually endures harsh environmental conditions. Here, we presented a new encapsulation strategy to improve the stability of RMPs. At first, we managed to realize the azaphilic substitution reaction between orange Monascus pigments (OMPs) and soy protein to produce water-soluble RMPs, i.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!