The laccase in the pupal cuticle of the silkworm, Bombyx mori, is thought to accumulate as an inactive precursor that can be activated stage-dependently. In this study we isolated an 81-kDa laccase from cuticular extract of B. mori that was prepared by digestion of the pupal cuticles with α-chymotrypsin. The mass spectrometric analysis of the purified protein indicates that this 81-kDa laccase is a product of the Bombyx laccase2 gene. The purified 81-kDa laccase (α-chymotrypsin-solubilized Bombyx laccase2: Bm-clac2) has an N-terminal sequence of RNPADS that corresponds to Arg146 to Ser151 of the deduced protein sequence of Bmlaccase2 cDNA, indicating that Bm-clac2 lacks the N-terminal part upstream from residue Arg146. Bm-clac2 shows enzymatic activity, but its specific activity is increased around 17-fold after treatment with trypsin, which involves cleavage of peptide bonds at the C-terminal region. We also found that the activity of Bm-clac2 is increased in the presence of isopropanol. In previous reports, proteolytic processing has been hypothesized as a system for laccase activation in vivo, but the present result implies that this type of processing is not the only way to convert Bm-clac2 to the high-activity enzyme.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ibmb.2014.10.004DOI Listing

Publication Analysis

Top Keywords

81-kda laccase
12
laccase pupal
8
pupal cuticle
8
cuticle silkworm
8
silkworm bombyx
8
bombyx mori
8
system laccase
8
laccase activation
8
bombyx laccase2
8
laccase
7

Similar Publications

The laccase in the pupal cuticle of the silkworm, Bombyx mori, is thought to accumulate as an inactive precursor that can be activated stage-dependently. In this study we isolated an 81-kDa laccase from cuticular extract of B. mori that was prepared by digestion of the pupal cuticles with α-chymotrypsin.

View Article and Find Full Text PDF

Molecular cloning of the cDNA encoding laccase from Pycnoporus cinnabarinus I-937 and expression in Pichia pastoris.

Eur J Biochem

March 2000

Laboratoire de Biotechnologie des Champignons Filamenteux, INRA, Faculté des Sciences de Luminy, Marseille, France.

Laccases are multicopper-containing enzymes which catalyse the oxidation of phenolic and nonphenolic compounds with the concomitant reduction of molecular oxygen. In this study, a full-length cDNA coding for laccase (lac1) from Pycnoporus cinnabarinus I-937 was isolated and characterized. The corresponding open reading frame is 1557 nucleotides long and encodes a protein of 518 amino acids.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!