A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Sonophotolytic degradation of synthetic pharmaceutical wastewater: statistical experimental design and modeling. | LitMetric

Sonophotolytic degradation of synthetic pharmaceutical wastewater: statistical experimental design and modeling.

J Environ Manage

Department of Chemical Engineering, Ryerson University, 350 Victoria St., Toronto, Ontario, Canada M5B 2K3.

Published: March 2015

The merits of the sonophotolysis as a combination of sonolysis (US) and photolysis (UV/H2O2) are investigated in a pilot-scale external loop airlift sonophotoreactor for the treatment of a synthetic pharmaceutical wastewater (SPWW). In the first part of this study, the multivariate experimental design is carried out using Box-Behnken design (BBD). The effluent is characterized by the total organic carbon (TOC) percent removal as a surrogate parameter. The results indicate that the response of the TOC percent removal is significantly affected by the synergistic effects of the linear term of H2O2 dosage and ultrasound power with the antagonistic effect of quadratic term of H2O2 dosage. The statistical analysis of the results indicates a satisfactory prediction of the system behavior by the developed model. In the second part of this study, a novel rigorous mathematical model for the sonophotolytic process is developed to predict the TOC percent removal as a function of time. The mathematical model is based on extensively accepted sonophotochemical reactions and the rate constants in advanced oxidation processes. A good agreement between the model predictions and experimental data indicates that the proposed model could successfully describe the sonophotolysis of the pharmaceutical wastewater.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2014.11.011DOI Listing

Publication Analysis

Top Keywords

pharmaceutical wastewater
12
toc percent
12
percent removal
12
synthetic pharmaceutical
8
experimental design
8
term h2o2
8
h2o2 dosage
8
mathematical model
8
model
5
sonophotolytic degradation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!