Tendon stem/progenitor cell (TSPC) senescence may lead to age-related tendon disorders and impair tendon regeneration and replacement capacity in humans. However, the mechanisms governing TSPC aging and degeneration remain obscure. Recently, it has been reported that Rho-associated coiled-coil protein kinase 1 (ROCK1) might be a key player in TSPC aging process. miRNAs are also involved in cellular senescence. In this study, whether miRNAs modulate senescence of TSPCs through targeting ROCK1 was evaluated. We found that miR-135a, which directly binds to the 3'-untranslated region of ROCK1, is significantly downregulated in aged compared with young TSPCs. Overexpression of miR-135a in young TSPCs suppresses senescence, promotes proliferation, and induces migration and tenogenic differentiation, whereas suppression of miR-135a in aged TSPCs has the opposite effects. By gain-of-function and loss-of-function studies, we confirmed that ROCK1 mediates the effects of miR-135a in TSPCs. Taken together, our data suggest that miR-135a plays an important role in TSPC senescence via targeting ROCK1.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bone.2014.11.001DOI Listing

Publication Analysis

Top Keywords

tendon stem/progenitor
8
stem/progenitor cell
8
tspc senescence
8
tspc aging
8
targeting rock1
8
young tspcs
8
mir-135a
6
senescence
6
rock1
6
tspcs
5

Similar Publications

Traumatic tendon injuries generate reactive oxygen species and inflammation, which may account for slow or poor healing outcomes. Selenium is an essential trace element presented in selenoproteins, many of which are strong antioxidant enzymes. Selenium nanoparticles (SeNPs) have been reported to promote tissue repair due to their anti-oxidative, anti-inflammatory, anti-apoptotic, and differentiation-modulating properties.

View Article and Find Full Text PDF

CNPY2 modulates senescence-associated secretory phenotype in tendon stem/progenitor cells.

Tissue Cell

December 2024

Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China. Electronic address:

Age-related diseases are often linked to chronic inflammation. Senescent cells secrete inflammatory cytokines, chemokines and matrix metalloproteinases, collectively referred to as the senescence-associated secretory phenotype (SASP). The current study discovered that aging leads to the accumulation of senescent tendon stem/progenitor cells (TSPCs) in tendon tissue, resulting in the development of a SASP.

View Article and Find Full Text PDF

Background: Tendinopathy is very common in clinical practice, which is highly prevalent in athletes, sports enthusiasts and other people involved in high-load weight-bearing activities. Common types of tendinopathy include rotator cuff injury, Achilles tendinitis, tennis elbow and so on. Macrophages (Macs) are key immune cells in the pathogenesis of tendinopathy.

View Article and Find Full Text PDF

Regeneration process of severed rabbit common calcanean tendons influenced by external compression.

J Orthop Surg Res

November 2024

Department of Orthopaedics, General Hospital of Central Theater Command, NO. 627, Wuluo Road, Hongshan District, Wuhan, Hubei Province, 430070, PR China.

Article Synopsis
  • This study investigates how external compression affects the healing of ruptured Achilles tendons in rabbits by comparing a control group that received only immobilization to a group with added compression through a 3D-printed clasp.
  • After 4 weeks, the control group's tendons displayed better regeneration, while the compression group had more issues such as disorganized collagen and larger adhesion.
  • The findings suggest that although the tendon can regenerate across a gap, applying excessive compression may hinder proper healing and quality tissue regeneration.
View Article and Find Full Text PDF

Tendon injuries often exhibit limited healing capacity, frequently complicated by peritendinous adhesion, posing a substantial challenge in clinical tendon repair. Although present biomaterial-based membranes offer a promising strategy for tendon treatment, their clinical application is hindered by inflammation-induced adhesion. Herein, this study presents a dual-functional biomimetic tendon sheath based on a coaxial electrospun nanofibrous membrane for enhancing tendon repair and simultaneously preventing peritendinous adhesion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!