Graphene oxide as electron shuttle for increased redox conversion of contaminants under methanogenic and sulfate-reducing conditions.

Bioresour Technol

División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica (IPICyT), Camino a la Presa San José 2055, Col. Lomas 4ª, Sección, San Luis Potosí, SLP 78216, Mexico. Electronic address:

Published: January 2015

Graphene oxide (GO) is reported for the first time as electron shuttle to increase the redox conversion of the azo compound, reactive red 2 (RR2, 0.5mM), and the nitroaromatic, 3-chloronitrobenzene (3CNB, 0.5mM). GO (5mgL(-1)) increased 10-fold and 7.6-fold the reduction rate of RR2 and 3CNB, respectively, in abiotic incubations with sulfide (2.6mM) as electron donor. GO also increased by 2-fold and 3.6-fold, the microbial reduction rate of RR2 by anaerobic sludge under methanogenic and sulfate-reducing conditions, respectively. Deep characterization of GO showed that it has a proper size distribution (predominantly between 450 and 700nm) and redox potential (+50.8mV) to promote the reduction of RR2 and 3CNB. Further analysis revealed that biogenic sulfide plays a major role on the GO-mediated reduction of RR2. GO is proposed as an electron shuttle to accelerate the redox conversion of recalcitrant pollutants, such as nitro-benzenes and azo dyes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2014.10.101DOI Listing

Publication Analysis

Top Keywords

electron shuttle
12
redox conversion
12
graphene oxide
8
methanogenic sulfate-reducing
8
sulfate-reducing conditions
8
reduction rate
8
rate rr2
8
rr2 3cnb
8
reduction rr2
8
rr2
5

Similar Publications

An observed "sandwich" framework mediated via sulfate ions as electron shuttle for efficient electro-oxidation of organic pollutants.

Water Res

January 2025

Environmental Energy Engineering (E(3)) Workgroup, School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China. Electronic address:

"Electro-oxidation processes are effective in treating sulfate-rich organic wastewater. However, this technology development has been hindered by the poor understanding of the role of sulfate ions. This paper reports that high concentration of sulfate ions significantly enhanced the electro-oxidation of organic pollutants.

View Article and Find Full Text PDF

Aqueous zinc-iodine batteries (AZIBs) are gaining attention as next-generation energy storage systems due to their high theoretical capacity, enhanced safety, and cost-effectiveness. However, their practical application is hindered by challenges such as slow reaction kinetics and the persistent polyiodide shuttle effect. To address these limitations, we developed a novel class of covalent organic frameworks (COFs) featuring electron-rich nitrogen sites with varied density and distribution (N1-N4) along the pore walls.

View Article and Find Full Text PDF

Mechanistic insight into multiple effects of copper ion on the photoreactivity of dissolved organic matter.

J Hazard Mater

January 2025

Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.

Sunlight irradiation of dissolved organic matter (DOM) in surface water results in the production of photochemically produced reactive intermediates (PPRIs). This process is inevitably influenced by co-existing metal ions in aquatic environments; However, the underlying mechanism remains unclear. In this study, the effect of co-existing copper ion (Cu) on PPRIs produced by irradiation of DOM was systematically investigated, because Cu is a typical redox transient cation and has strong affinity to DOM.

View Article and Find Full Text PDF

Graphene quantum dot-modified CoO/NiCoO yolk-shell polyhedrons as a polysulfide-adsorptive sulfur host for lithium-sulfur batteries.

Chem Commun (Camb)

January 2025

Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China.

The shuttle effect of lithium polysulfides and non-ideal reaction kinetics restrict the development of high-energy-density lithium-sulfur (Li-S) batteries. Here, we report a graphene quantum dot (GQD)-modified CoO/NiCoO yolk-shell polyhedron as a sulfur host for Li-S batteries. GQDs shorten transport pathways of electrons, while strong binding of CoO and NiCoO to LiS, LiS and LiS are demonstrated from density functional theory calculations.

View Article and Find Full Text PDF

A Novel Self-Opening Transfer Shuttle for the Transfer of Air-Sensitive Sample to Scanning Electron Microscopy.

Microsc Microanal

January 2025

Instrumental Analysis Center, Dalian University of Technology, No.2 Linggong Road, Ganjingzi District, Dalian, Liaoning Province 116024, China.

A self-opening transfer shuttle has been designed and fabricated for the transfer of air-sensitive samples to scanning electron microscopy (SEM). Delayed push out of an airtight sample cabin sealed inside the shuttle allows the protection of the sample from air exposure during the pumping of SEM chamber. A compressed spring is employed to automatically drive the push out of the cabin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!