Neuropeptide FF (NPFF) modulates opiate actions. It has pro-nociceptive effects, primarily through the NPFF receptor 1 subtype, and anti-nociceptive effects, primarily through the NPFFR2 subtype. AC-263093 is a small l, organic, systemically active molecule that was previously shown to functionally activate NPFFR2, but not NPFFR1. It was hypothesized that AC-263093 would attenuate morphine tolerance. Rats were tested for radiant heat tail-flick latency before and after 5 mg/kg morphine sulfate s.c. They were then rendered morphine-tolerant by continuous subcutaneous infusion of 17.52 mg/kg/day morphine sulfate. On the seventh day of infusion, they were retested for analgesia 10 and 20 min after 5mg/kg morphine sulfate s.c. Tolerance was indicated by reduction of morphine analgesia from the pre-infusion test. Fifty minutes prior to morphine challenge, rats received either 10 mg/kg i.p. AC-263093 or injection vehicle alone. AC-2623093-treated rats had far smaller tolerance scores than control rats. This drug effect was significant, p = 0.015. The same dose of AC-263093 had almost no analgesic effect in non-tolerant, saline-infused rats. In vitro experiments revealed that AC-263093 had equal affinity for NPFFR1 and NPFFR2, and functionally inactivated NPFFR1, in addition to its previously shown ability to activate NPFFR2. Thus, altering the balance between activation of NPFF receptor subtypes may provide one approach to reversing opiate tolerance.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neulet.2014.10.018DOI Listing

Publication Analysis

Top Keywords

npff receptor
12
morphine sulfate
12
morphine tolerance
8
activate npffr2
8
morphine
6
tolerance
5
ac-263093
5
rats
5
reversal morphine
4
tolerance compound
4

Similar Publications

Neuropeptide FF (NPFF) is an endogenous octapeptide that was originally isolated from the bovine brain. It belongs to the RFamide family of peptides that has a wide range of physiological functions and pathophysiological effects. NPFF and its receptors, NPFFR1 and NPFFR2, abundantly expressed in rodent and human brains, participate in cardiovascular regulation.

View Article and Find Full Text PDF

The dual modulating effects of neuropeptide FF on morphine-induced analgesia at the spinal level.

Neuroscience

January 2025

Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China. Electronic address:

Increasing evidence indicates that neuropeptide FF (NPFF) produces analgesic effects and augments opioid-induced analgesia at the spinal level. However, our recent research demonstrated that NPFF exerted complex opioid-modulating effects in an inflammatory pain model after intrathecal (i.t.

View Article and Find Full Text PDF

RF-amide peptide receptors including the neuropeptide FF receptor 1 (NPFFR1) are G protein-coupled receptors (GPCRs) that modulate diverse physiological functions. High conservation of endogenous ligands and receptors makes the identification of selective ligands challenging. Previously identified antagonists mimic the C-terminus of peptide ligands and lack selectivity towards the closely related neuropeptide FF receptor 2 (NPFFR2) or the neuropeptide Y receptor (YR).

View Article and Find Full Text PDF

Neuropeptide FF prevented histamine- or chloroquine-induced acute itch behavior through non-NPFF receptors mechanism in male mice.

Neuropeptides

December 2024

Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology, School of Basic Medical Sciences, State Key Laboratory of Animal Diseases Control, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China. Electronic address:

The neuropeptide FF (NPFF) system regulates various physiological and pharmacological functions, particularly pain modulation. However, the modulatory effect of NPFF system on itch remains unclear. To investigate the modulatory effect and functional mechanism induced by NPFF system on acute itch, we examined the effects of supraspinal administration of NPFF and related peptides on acute itch induced by intradermal (i.

View Article and Find Full Text PDF
Article Synopsis
  • GPR10 and NPFFR2 receptors are crucial for controlling food intake and energy balance, and studying their ligands can help create treatments for obesity.
  • Double knockout (dKO) mice, which lack both receptors, were tested on standard and high-fat diets to understand the metabolic effects of their deficiency, showing issues like glucose intolerance and insulin resistance.
  • The dKO males gained more weight due to higher caloric intake, while dKO females showed obesity and anxiety-like behavior, highlighting the need to investigate these receptor pathways for anti-obesity therapies.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!